THE GENERALIZATION OF A LEMMA OF M. S. KAKEYA

J. GERONIMUS

We shall prove the following:

Lemma. It is always possible to find the unique polynomial

\[\phi^*(z) = \sum_{k=0}^{2s} \gamma_k z^k \]

of degree \(2s \) possessing the following properties:

I. \(\phi^*(z) = ci^2(z)\tau(z)\tau^*(z), \quad c = \text{const.,} \)

the polynomial \(i(z) \) of degree \(\sigma \leq s \) having all roots in the domain \(|z| > 1 \):

\[i(z) = \prod_{i=1}^{\sigma} (z - a_i), \quad |a_i| > 1, \quad i = 1, 2, \ldots, \sigma, \]

and the polynomial \(\tau(z) \) being of degree \(\nu = s - \sigma \):

\[\tau(z) = \prod_{i=1}^{\nu} (z - \alpha_i), \quad \tau^*(z) = z^\nu \left(\frac{1}{z} \right) = \prod_{i=1}^{\nu} (1 - z\alpha_i). \]

II. It is subject to the conditions

\[\omega_i(\phi^*) = \sum_{k=0}^{2s} \gamma_k c^{(i)}_k = d_i, \quad i = 0, 1, \ldots, s, \]

the given linear functionals \(\omega_i \) being such that every polynomial \(\phi(z) \) of degree \(n \geq 2s \) for which

\[\omega_i(\phi) = \sum_{k=0}^{2s} \gamma_k c^{(i)}_k = 0, \quad (i = 0, 1, \ldots, s), \quad \phi(z) = \sum_{k=0}^{n} \gamma_k z^k, \]

has \(s + 1 \) roots at least in the domain \(|z| < 1 \).

In the particular case when

\[\omega_i(\phi) = \phi^{(i)}(z_k), \quad |z_k| < 1, \]

this lemma has been proved by M. S. Kakeya \[1\];\(^1\)

without being aware of his result we have proved this lemma in the case\(^2\)

\(^1\) Numbers in brackets refer to the bibliography at the end.

\(^2\) In \[1\] and \[2\] one may find the application of this lemma to some extremal problems.

93
\[\omega_i(\phi) = \frac{1}{i!} \left(\frac{d^i \phi}{dz^i} \right)_{z=0}, \quad i = 0, 1, \ldots, s. \]

In order to prove this lemma in the most general case we consider the following extremal problem:

PROBLEM. To find the minimum of the integral

\[L(b) = \int_0^{2\pi} |t(z)|^2 b(\theta) d\theta, \quad z = e^{i\theta}, \]

\(t(z) \) being the given polynomial of degree \(s \) with \(t(0) \neq 0 \) and \(b(\theta) \) being a trigonometric polynomial of order \(n \geq 2s \):

\[b(\theta) = R \left\{ z^n \phi \left(\frac{1}{z} \right) \right\} = R \sum_{k=0}^{n} \gamma_k \phi^{(n-k)} \theta, \quad z = e^{i\theta}, \]

subject to the conditions\(^8\)

\[\omega_i(b) = \omega_i(\phi) = \sum_{k=0}^{2s} \gamma_k c_k^{(i)} = d_i, \quad i = 0, 1, \ldots, s. \]

The fundamental property of our functionals \(\omega_i \) yields at once that every trigonometric polynomial \(b(\theta) \) subject to the conditions

\[\omega_i(b) = 0, \quad i = 0, 1, \ldots, s, \]

has in \((0, 2\pi)\) no more than \(2(n-s-1) \) changes of sign. It is clear that there exists a solution of our problem. Further, the necessary conditions for an extremum are

\[\text{sgn} \ b^*(\theta) \ |t(z)|^2 = R \sum_{k=n-2s}^{\infty} A_k z^k, \quad z = e^{i\theta}, \]

whence we find at once that the Fourier expansion of \(\text{sgn} \ b^*(\theta) \) is of the form

\[\text{sgn} \ b^*(\theta) = R \sum_{k=n-s}^{\infty} B_k z^k, \quad z = e^{i\theta}. \]

We have shown in \([2]\) that every trigonometric polynomial with this property must be of the form

\[b^*(\theta) = R \left\{ \hat{c} z^{n-2s+\sigma} q(z) \right\} \tau(z) \tau(1/z), \quad z = e^{i\theta}, \]

\(q(z) \) being a polynomial of degree \(\sigma \leq s \) all of whose roots lie in the domain \(|z| < 1 \), and \(\tau(z) \) being a polynomial of degree \(\nu = s - \sigma \).

\(^8\) The functionals \(\omega_i \) are the same as above.
The polynomial $b^*(\theta)$ for which the minimum is attained is unique. If there were two such polynomials, $b^*_1(\theta)$ and $b^*_2(\theta)$, then we would have

$$L(b^*_1) \leq L\left(\frac{b^*_1 + b^*_2}{2}\right) \leq L(b^*_2);$$

then $b^*_1(\theta)$ and $b^*_2(\theta)$ would change sign at the same points, that is, the polynomial

$$b^*_1(\theta) - b^*_2(\theta) = \mathcal{R}\left\{z^{n-2s+r}q^2(z)\right\}\left\{c_1 | \tau_1(z)|^2 - c_2 | \tau_2(z)|^2\right\}, \quad z = e^{i\theta},$$

would have at least $2(n-v)$ changes of sign in $(0, 2\pi)$; but since

$$\omega_i(b^*_1 - b^*_2) = 0, \quad i = 0, 1, \ldots, s,$

the polynomial $b^*_1(\theta) - b^*_2(\theta)$ cannot have more than $2(n-s-1)$ changes of sign in $(0, 2\pi)$; this contradiction proves the unicity of the polynomial solving our problem. Thus we find that there exists the unique polynomial $b^*(\theta)$ minimizing (1) under conditions (2) and it must be of the form

$$b^*(\theta) = \mathcal{R}\left\{z^{n-2s+r}q^2(z)\tau(z)\tau(1/z)\right\} = \mathcal{R}\left\{z^n + z^{n-1} + \cdots + z^{2s}q^{n-2s}\right\}, \quad z = e^{i\theta}.$$

Since the real parts of two polynomials coincide on the unit circle, these polynomials are identical, that is,

$$\bar{c}z^{n-2s}q^2(z)\tau(z)\tau^*(z) = z^n + z^{n-1} + \cdots + z^{2s},$$

whence we find finally

$$f^*(z) = q^* + z^* + \cdots + z^{2s} = ci^2(z)\tau(z)\tau^*(z),$$

where

$$i(z) = q^*(z) = z^*q(1/z).$$

Thus we have found the polynomial $f^*(z)$ satisfying all the conditions of our lemma.

Bibliography
