AN ADDITIONAL CRITERION FOR THE FIRST CASE OF FERMAT'S LAST THEOREM

BARKLEY ROSSER

In an earlier paper it was shown that if p is an odd prime and

$$a^p + b^p + c^p = 0$$

has a solution in integers prime to p, then

$$m^{p-1} \equiv 1 \pmod{p^2}$$

for each prime $m \leq 41$. In this paper the result is extended to $m \leq 43$.

We will use the notations and conventions of I throughout, and a reference to a numbered equation will refer to the equation of that number in I. With p assumed to be an odd prime such that (1) has a solution in integers prime to p, we assume that a t exists such that the values of (2) satisfy (4), (5), and (6) with $m = 43$. Put $g(x) = f(x)f(-x)$ and

$$h(x) = (x^{42} - 1)/(x^6 - 1).$$

Then $g(x)$ divides $h(x)$, and $g(x)$ can be completely factored modulo p.

Case 1. Assume that a root of $g(x)$ is a root of

$$h(x)/(x^{12} + x^{10} + x^8 + x^6 + x^4 + x^2 + 1).$$

Then this root belongs to either the exponent 21 or the exponent 42 modulo p. Hence $p \equiv 1 \pmod{42}$. So there is an ω such that

$$\omega^2 + \omega + 1 \equiv 0.$$

Then $g(x), g(\omega x), \text{ and } g(\omega^2 x)$ all divide $h(x)$. Moreover, the only cases in which two of $g(x), g(\omega x), \text{ and } g(\omega^2 x)$ have a common factor are

I. $a^6 + 1 \equiv 0$,

II. $a^6 + a^3 + 3a^2 + 3a + 1 \equiv 0$,

III. $a^6 - a^3 - 3a^2 - 3a - 1 \equiv 0$,

or cases derived from these by replacing a by one of the other roots of $f(x)$. So if we show that $h(x)$ has no factor in common with any of $x^6 + 1, x^6 + x^3 + 3x^2 + 3x + 1, \text{ or } x^6 - x^3 - 3x^2 - 3x - 1$, then we can conclude that $g(x)g(\omega x)g(\omega^2 x)$ must divide $h(x)$.

Clearly $h(x)$ has no factor in common with $x^6 + 1$.

1 Presented to the Society, April 27, 1940.

2 A new lower bound for the exponent in the first case of Fermat's last theorem, this Bulletin, vol. 46 (1940), pp. 299–304. This paper will be referred to as I.
Suppose \(h(x) \) has a factor in common with \(x^6 + x^3 + 3x^2 + 3x + 1 \). This latter has the factors \(x^2 + x + 1 \) and \(x^4 - x^2 + 2x + 1 \). The first has no factor in common with \(h(x) \), since it divides \(x^6 - 1 \), which has no factor in common with \(h(x) \). To test the second, we try it successively with each of the four factors of \(h(x) \), getting the eliminants
\[
13 \cdot 19^2 \cdot 127 \cdot 163^2, \ 5 \cdot 36913, \ 2 \cdot 127, \ 5 \cdot 7.
\]

Suppose \(h(x) \) has a factor in common with \(x^6 - x^3 - 3x^2 - 3x - 1 \). This latter has the factors \(x^2 - x - 1 \) and \(x^4 + x^3 + 2x^2 + 2x + 1 \). The first has no factor in common with \(h(x) \) by Lemma 3 of I. Trying the second factor successively with each of the four factors of \(h(x) \), we get the eliminants
\[
7^8 \cdot 43, \ 2^2 \cdot 7 \cdot 13 \cdot 43, \ 7, \ 43.
\]

So \(g(x)g(\omega x)g(\omega^2 x) \) must divide \(h(x) \). Since both are of degree 36, they must be equal. Putting \(b = c + 5 \) and equating coefficients, we get
\[
A + 1 = 2c^3 + 3c^2 - 24c + 13 = 1,
\]
\[
B + 1 = c^6 + 12c^5 + 42c^4 + 18c^3 - 9c^2 - 222c + 173 = 1,
\]
\[
C + 1 = -2c^6 + 12c^5 + 171c^4 + 132c^3 - 666c^2 + 132c + 201 = 1.
\]

Dividing \(16B \) and \(8C \) by \(A \), we get the remainder
\[
43D = 43(99c^2 + 192c - 116) = 0
\]
from each. Then
\[
2cE = 29A + 3D = 2c(29c^2 + 192c - 60) = 0.
\]
As \(c = 0 \) would give \(A = 12 = 0 \), we have
\[
28cF = 15D - 29E = 28c(23c - 96) = 0,
\]
\[
29cG = 8E - 5F = 29c(8c - 49) = 0,
\]
\[
8F - 23G = 359 = 0.
\]

Case 2. Assume that no root of \(g(x) \) is a root of
\[
\frac{h(x)}{(x^{12} + x^{10} + x^8 + x^6 + x^4 + x^2 + 1)}.
\]
Then, since \(g(x) \) divides \(h(x) \) and is of degree 12,
\[
g(x) = x^{12} + x^{10} + x^8 + x^6 + x^4 + x^2 + 1.
\]
So \(2c + 1 = 1 \) and \(c^2 + 5 = 1 \).

P R I N C E T O N U N I V E R S I T Y