LINEAR FORMS IN FUNCTION FIELDS

LEONARD TORNHEIM

We shall prove algebraically an analogue for function fields of a well known theorem of Minkowski on linear forms.

THEOREM 1. Let F be a field and z an indeterminate over F. Let

(1) $L_i = \sum_{j=1}^{n} a_{ij}x_j,$ $i = 1, \cdots, n,$

be n linear expressions with coefficients a_{ij} in $F(z)$ and with the determinant $|a_{ij}|$ of degree d. Then for any set of n integers c_1, \cdots, c_n which satisfy the condition $\sum_{i=1}^{n} c_i > d - n$ there exists a set of values for x_1, \cdots, x_n in $F[z]$ and not all zero such that each L_i has degree at most c_i.

First, we may assume that all of the c_i are equal. For, suppose that c is the maximum of the c_i. Write L_i' for $L_i - c - c_i$. The determinant of the coefficients of the L_i' has degree $d' = d + \sum (c - c_i) < \sum c + n$. If there is a set of values for x_1, \cdots, x_n with the property that the degree of each L_i' is at most c, then these same values will make the degree of L_i at most c_i.

Next, we may assume, after multiplying each L_i by a suitable polynomial and using an argument similar to that above, that all the a_{ij} are in $F[z]$.

We shall now convert our system of L_i by means of a transformation of determinant unity with elements in $F[z]$ into an equivalent system having $a_{ij} = 0$ for $i < j$. Let b_1 be the g.c.d. of the a_{ij}; then $b_1 = \sum_{j=1}^{n} a_{1j}c_{1j}$ for appropriate c_{1j} in $F[z]$. Necessarily the c_{1j} are relatively prime. It is possible to find other quantities c_{jk} ($k = 2, \cdots, n$) such that the determinant $|c_{jk}|$ has value unity. Thus the transfor-

1 Presented to the Society, April 13, 1940.
4 The degree of a rational function is the degree of the numerator less that of the denominator. Zero is assigned the degree minus infinity.
5 A. A. Albert, Normalized integral bases of algebraic number fields I, Annals of Mathematics, (2), vol. 38 (1937), p. 926 ff. The statement is proved for rational integral c_{jk} but the proof applies to any integral domain having the property that a
mation $x_i = \sum_{k=1}^{n} c_{jk} x_k'$ has determinant unity and hence it has a reciprocal transformation with elements in $F[z]$. The forms L_i are transformed into $L'_i = \sum_{k=1}^{n} a_{ik} x_k'$. Here $a_{ik} = \sum_{j=1}^{n} d_{ij} c_{jk}$, and, being a linear combination of a_{ij}, it is divisible by their g.c.d. b_i; $a_{ik} = b_i d_{ik}$.

The transformation

$$x'_i = x'_i - \sum_{k=2}^{n} a_{ik} x'_k, \quad x'_r = x''_r, \quad r = 2, \ldots, n,$$

of determinant unity transforms the L'_i into L''_i with $L''_i = b_i x'_i$.

The procedure is repeated for the $n-1$ linear forms $M_i = \sum_{j=2}^{n} a_{ij} x'_j$ ($i = 2, \ldots, n$). Finally, if this process is continued, the resultant transformation converts the original system (1) into one with $a_{ij} = 0$ for $i < j$. As a consequence, if the degree of a_{ij} is d_i, then $\sum d_i = d$. By using another transformation of determinant unity we may assume that the degree of each a_{ij} is at most d_i.

Let G_1 be the set of all n-tuples $(s_1, \ldots, s_n) = s$ where the s_i are in $F[z]$ and have degree not greater than c; hence G_1 is a linear set over F whose order $u_1 = n(c+1)$. Write $L_i(s)$ for $\sum_{j=1}^{n} a_{ij} s_j$. Let G_r of order u_r over F be the linear subset of G_1 composed of all quantities s for which L_1, \ldots, L_{r-1} all take values of degree not greater than c. Designate by P_r the set of all $L_r(s)$ with s in G_r, and by Q_r the set of all polynomials in P_r of degree not exceeding c. Since the maximum degree possible for a polynomial in P_r is $c + d_r$, the number of linearly independent polynomials of P_r which are not in Q_r, that is, the order of P_r/Q_r, is less than or equal to d_r. Now $G_r/Q_{r+1} \simeq P_r/Q_r$, a fact which follows from the mapping of G_r on P_r and G_{r+1} on Q_r. Hence $[G_r:G_{r+1}] \leq \sum_{i=m+1}^{n} d_i = d$. Therefore the order u_{n+1} of G_{n+1} is not less than $n(c+1) - d$. To be sure that G_{n+1} has elements other than zero, we must have $u_{n+1} \geq 1$, that is, $nc = \sum c \geq d + 1 - n$.

The following theorem applies if some of the L_i must be made equal to zero.

Theorem 2. If in Theorem 1 the first m of the L_i are to be made equal to zero and if their coefficients are in $F[z]$, then the conclusion will hold if $\sum_{i=m+1}^{n} c_i > d - (n - m)$.

For, the first m polynomials s_i must be zero if we have the transformed system used in the proof of Theorem 1. Application of Theorem 1 for the remaining L_i yields Theorem 2.