ON SPHERICAL CYCLES

SAMUEL EILENBERG

Given a metric separable space \(\mathcal{Y} \), we consider the homology group \(B^n(\mathcal{Y}) \) obtained using \(n \)-dimensional singular cycles in \(\mathcal{Y} \) with integer coefficients. Every continuous mapping \(f \in \mathcal{Y}^{S^n} \) of the oriented \(n \)-dimensional sphere \(S^n \) into \(\mathcal{Y} \) defines uniquely an element \(h(f) \) of \(B^n(\mathcal{Y}) \). Clearly if \(f_0, f_1 \in \mathcal{Y}^{S^n} \) are two homotopic mappings, then \(h(f_0) = h(f_1) \).

The homology classes \(h(f) \) will be called spherical homology classes. A cycle will be called spherical if its homology class is spherical.\(^2\)

Theorem 1. If \(\mathcal{Y} \) is arcwise connected, the spherical homology classes form a subgroup of \(B^n(\mathcal{Y}) \).

Let \(p \in S^n, q \in \mathcal{Y} \), and let \(S^n = S^n_+ + S^n_- \) be a decomposition of \(S^n \) into two hemispheres such that \(p \in S^n_+ \cdot S^n_- \). Consider \(f_0, f_1 \in \mathcal{Y}^{S^n} \). It is well known that, replacing if necessary \(f_0 \) and \(f_1 \) by homotopic mappings, we may assume that \(f_0(S^n_-) = q \) and that \(f_1(S^n_-) = q \). Defining \(f = f_0 \) on \(S^n_- \) and \(f = f_1 \) on \(S^n_+ \) we clearly have
\[
f \in \mathcal{Y}^{S^n}, \quad h(f) = h(f_0) + h(f_1).
\]
The homology class \(h(f_0) + h(f_1) \) is therefore spherical.

Let \(M^r \) be an \(r \)-dimensional (finite or infinite) manifold\(^3\) and \(P^{r-n-1} \) \((n > 0)\) an at most \((r-n-1)\)-dimensional subpolyhedron of \(M^r \).

Theorem 2. Every \(n \)-dimensional cycle \(\gamma^n \) in \(M^r - P^{r-n-1} \) such that \(\gamma^n \sim 0 \) in \(M^r \) is spherical (with respect to \(M^r - P^{r-n-1} \)).

Let \(a^{r-n-1} \) be an \((r-n-1)\)-dimensional simplex of \(M^r \) and \(b^{n+1} \) the \((n+1)\)-cell dual to it. The boundary \(\partial b^{n+1} \) is contained in \(M^r - P^{r-n-1} \) and is a spherical cycle. Since \(M^r - P^{r-n-1} \) is connected, the spherical homology classes of \(B^n(M^r - P^{r-n-1}) \) form a group. It follows that each cycle of the form
\[
(\ast) \quad \partial \left(\sum_i \alpha_i \delta_i^{n+1} \right)
\]
is a spherical cycle with respect to \(M^r - P^{r-n-1} \). The cycle \(\gamma^n \) is homologous in \(M^r - P^{r-n-1} \) to a cycle of the form \((\ast)\). Therefore \(\gamma^n \) is spherical.

\(^1\) Presented to the Society, April 13, 1940.

\(^2\) Spherical cycles were considered by W. Hurewicz, Proceedings, Akademie van Wetenschappen te Amsterdam, vol. 38 (1935), pp. 521–528.

THEOREM 3. Let γ^n be a spherical cycle in M^r and let $r > 2n$. Then there is a simplicial homeomorphism $g \in M^{r^n}$ such that $\gamma^n \sim h(g)$.

This is an immediate consequence of Theorem 5 below. Using Theorem 2 we obtain the following:

THEOREM 4. Given an n-cycle $\gamma^n \subset M^r - P^{r-n-1}$ such that $\gamma^n \sim 0$ in M^r, there is a cycle $\gamma^n_1 \subset M^r - P^{r-n-1}$ which is a simplicial and homeomorphic image of S^n such that $\gamma^n \sim \gamma^n_1$ in $M^r - P^{r-n-1}$.

THEOREM 5. Let Q^n be a finite n-dimensional polyhedron and let $r > 2n$. Every continuous mapping $f \in M^{Q^n}$ can be approached by simplicial homeomorphisms $g \in M^{Q^n}$.

We may admit that the mapping f is simplicial. Let a_1, a_2, \cdots, a_k be the vertices of the complex $f(Q^n)$ and let $\sigma_1, \sigma_2, \cdots, \sigma_k$ be the corresponding stars. Let us choose $\delta > 0$ so that $x \in f(Q^n)$ will imply $\rho(x, M^r - \sigma_i) > \delta$ for some $i = 1, 2, \cdots, k$.

Let $\delta > 2\epsilon > 0$. We are going to define a sequence $f = f_0, f_1, \cdots, f_k$ of simplicial maps of Q^n into M^r such that

1. $\left| f_i(x) - f_{i-1}(x) \right| < \frac{\epsilon}{k}$,
2. $f_i(x_1) = f_i(x_2)$ implies $f_{i-1}(x_1) = f_{i-1}(x_2)$,
3. $x_1 \neq x_2$ and $f_i(x_1) = f_i(x_2) = y$ imply $\rho(y, M^r - \sigma_i) < \delta \frac{2k - i}{2k}$.

Suppose that $f_0, f_1, \cdots, f_{i-1}$ are already defined. Let

$$f_i(x) = f_{i-1}(x) \quad \text{if} \quad f_{i-1}(x) \in M^n - \sigma_i,$$
and let $Q^n_i = f_{i-1}^{-1}(\sigma_i)$.

M^r being a manifold, σ_i is simplicially homeomorphic with a convex r-cell in a euclidean r-dimensional space. Since $r > 2n$, then using the very well known procedure of making vertices linearly independent we find a simplicial map $f_i(Q^n_i) \subset \sigma_i$ such that $f_i(x) = f_{i-1}(x)$ if $f_{i-1}(x)$ is on the boundary of σ_i and satisfying (1)–(3).

Taking $g = f_k$ it follows from (1) that

$$\left| g(x) - f(x) \right| < \epsilon.$$

4 With respect to certain simplicial subdivisions of M^r and S^n.
5 σ_i consists of all closed simplices of M^r containing a_i.
Now if $x_1 \neq x_2$ and $g(x_1) = g(x_2)$, then according to (2) we have

$$f_i(x_1) = f_i(x_2) = y_i \quad \text{for } i = 0, 1, \cdots, k.$$

Owing to the definition of δ there is an index $j = 0, 1, \cdots, k$ such that

$$\rho(y_0, M^n - \sigma_j) > \delta.$$

Combining this with (1) we see that

$$\rho(y_i, M^n - \sigma_j) > \delta - \frac{\epsilon i}{k} > \delta - \frac{\delta i}{2k} = \delta - \frac{2k - i}{2k}.$$

Taking $i = j$ we obtain a contradiction with (3).