ON THE SIMULTANEOUS APPROXIMATION
OF TWO REAL NUMBERS

RAPHAEL M. ROBINSON

If $\xi_1, \xi_2, \ldots, \xi_n$ are any real numbers and t is a positive integer, then it is well known that integers a_1, a_2, \ldots, a_n, b can be found, such that $0 < b \leq t^n$ and

$$|b\xi_k - a_k| < \frac{1}{t}, \quad k = 1, 2, \ldots, n.$$

The proof is briefly the following.\(^2\) Consider the t^n+1 points $(r\xi_1, r\xi_2, \ldots, r\xi_n)$, where $r = 0, 1, \ldots, t^n$. Reduce mod 1 to congruent points in the unit cube $(0 \leq x_1 < 1, \ldots, 0 \leq x_n < 1)$. If this cube is divided into t^n cubes of edge $1/t$ (including the lower boundaries), then at least one of these small cubes must contain two of the reduced points, say those with $r=r'$ and $r=r''$. With $b = |r' - r''|$ and suitable a's, we evidently satisfy the required inequalities.

For $n = 1$, the inequality can be sharpened to

$$|b\xi - a| \leq \frac{1}{t+1},$$

b satisfying the condition $0 < b \leq t$. For if we consider the points $r\xi$ ($r = 0, 1, \ldots, t$), and mark the points in the interval $0 \leq x \leq 1$ which are congruent to them mod 1, we have at least $t+2$ points marked, since corresponding to $r=0$ we mark both 0 and 1. Some two of the marked points must lie within a distance $1/(t+1)$ from each other, so that the desired conclusion follows. This is the best result, as the example $\xi = 1/(t+1)$ shows.

The present note solves the corresponding problem for $n = 2$. For larger values of n the problem appears more difficult.

THEOREM. If ξ_1 and ξ_2 are any real numbers, and s is a positive integer, then integers a_1, a_2, b can be found, such that $0 < b \leq s$, and

$$|b\xi_k - a_k| \leq \max\left(\frac{[s^{1/2}]}{s+1}, \frac{1}{[s^{1/2}]+1}\right), \quad k = 1, 2.$$

For every s, values of ξ_1 and ξ_2 can be found for which the inequalities could not both be satisfied if the equality sign were omitted.

1 Presented to the Society, November 23, 1940.

2 The method used in this proof (\textit{Schubfachprinzip} or "pigeonhole principle") was first used by Dirichlet in connection with a similar problem. We sketch the proof here in order to compare it with the proof of the theorem below, which also uses that method.
The inequalities may also be written

\[|b\xi_k - a_k| \leq \begin{cases} \frac{t}{(s+1)} & \text{for } t^2 - 1 \leq s \leq t(t + 1) - 1, \\ \frac{1}{t + 1} & \text{for } t(t + 1) - 1 \leq s \leq (t + 1)^2 - 1. \end{cases} \]

It will be noted that in some intervals the bound does not decrease as \(s \) increases.

We show first that the theorem is the best possible. We shall think of the inequalities in the form just given. If \(s < (t + 1)^2 \), then it is evident that \(\xi_1 = 1/(t+1) \), \(\xi_2 = 1/(t+1)^2 \) are a pair of real numbers which cannot be approximated simultaneously with an error less than \(1/(t+1) \); this settles the second case. For the first case, consider the pair of real numbers \(\xi_1 = 1/(s+1) \), \(\xi_2 = t/(s+1) \). We are to show that not both errors can be made less than \(1/(s+1) \). We note first that \(b\xi_1 \) and \(b\xi_2 \) differ from integers by the same amount as \((s+1-b)\xi_1 \) and \((s+1-b)\xi_2 \); hence we may suppose that \(b \leq (s+1)/2 \), and therefore \(0 < b\xi_1 \leq 1/2 \). In order to make \(|b\xi_1 - a_1| < t/(s+1) \), we must have \(0 < b < t \). Then \(0 < b\xi_2 < 1 \). Since \(b\xi_2 \geq \xi_2 = t/(s+1) \) and \(1 - b\xi_2 \geq 1 - (t-1)\xi_2 = 1 - (t-1)t/(s+1) \geq t/(s+1) \), we see that the inequality \(|b\xi_2 - a_2| < t/(s+1) \) cannot be satisfied.

The theorem evidently follows from the lemma below, by putting \(t = \lfloor s^{1/2} \rfloor \).

Lemma. Let \(s \) and \(t \) be positive integers with \(s \geq t \). If \(\xi_1 \) and \(\xi_2 \) are any real numbers, then integers \(a_1 \), \(a_2 \), \(b \) can be found, such that \(0 < b \leq s \), and

\[|b\xi_1 - a_1| \leq t/(s + 1), \quad |b\xi_2 - a_2| \leq 1/(t + 1). \]

Proof. Consider the points \((r\xi_1, r\xi_2) \) with \(r = 0, 1, \ldots, s \). Mark all the points congruent to these mod 1 which fall in the rectangle \(0 \leq x_1 \leq t, 0 \leq x_2 < 1 \). There are \((s+1)t\) points to be marked with \(x_1 < t \); and in addition, the point \((t, 0)\) is marked, corresponding to \(r = 0 \). If we divide our rectangle into \(s+1 \) rectangles of width \(t/(s+1) \) (closed except at the top) by means of vertical lines, then at least one of them contains more than \(t \) points, all corresponding to different values of \(r \). The corresponding values of \(x_2 \) are \(t+1 \) or more numbers, some two of which differ mod 1 by not more than \(1/(t+1) \). Thus we find two points \((r'\xi_1, r'\xi_2)\) and \((r''\xi_1, r''\xi_2)\), whose horizontal distance mod 1 does not exceed \(t/(s+1) \) and whose vertical distance mod 1 does not exceed \(1/(t+1) \). Putting \(b = |r'-r''| \) gives the required result.

University of California