RATIONAL APPROXIMATIONS TO IRRATIONALS

ALEXANDER OPPENHEIM

It is well known that if \(p/q \) is a convergent to the irrational number \(x \), then \(|x - p/q| < 1/q^2 \). The immediate converse is of course false but I have not seen in the literature\(^1\) any statement of the converse which is given below.

Theorem 1. If \(p \) and \(q \) are coprime, \(q > 0 \), and if \(|x - p/q| < 1/q^2 \), then necessarily \(p/q \) is one of the three (irreducible) fractions

\[
\frac{p'}{q'}, \quad \frac{(p' + p'')/(q' + q'')}{(p' - p'')/(q' - q'')},
\]

where \(p''/q'' \), \(p'/q' \) are two consecutive convergents to the irrational \(x \). One at least of the two fractions \((p'+\epsilon p'')/(q'+\epsilon q'')\) where \(\epsilon = \pm 1 \) satisfies the inequality.

In other words if the inequality is satisfied, then

\[
p/q = \left[a_1, a_2, \ldots, a_n, c \right], \quad c = 0, \pm 1,
\]

where \([a_1, a_2, \ldots, a_r, \ldots] = x\) is the infinite simple continued fraction for \(x \), so that the \(a_i \) are integers, \(a_i \geq 1 \) \((i \geq 2)\).

Suppose that \(x - p/q = \epsilon \theta/q^2 \), \(0 < \theta < 1 \), \(\epsilon = \pm 1 \). Let

\[
p/q = [b_1, b_2, \ldots, b_m], \quad p'/q' = [b_1, b_2, \ldots, b_{m-1}],
\]

where \(m \) (which we can choose to be odd or even) is taken so that

\[
(\pm 1)^{m-1} = \epsilon.
\]

Defining \(y \) by the equation

\[
x = [b_1, b_2, \ldots, b_m, y] = (yp + p')/(yq + q'),
\]

we obtain

\[
\epsilon \theta = q^2(x - p/q) = (p'q - pq')q/(yq + q');
\]

so that, since

\[
p'q - pq' = (-1)^{m-1} = \epsilon, \quad y + q'/q = 1/\theta.
\]

Since \(1/\theta > 1 \) and \(q'/q < 1 \) it follows that \(y > 0 \).

If \(y > 1 \), then \(y = [b_{m+1}, b_{m+2}, \ldots] \) \((b_{m+1} \geq 1, \ldots)\), and so \(x = [b_1, b_2, \ldots, b_m, b_{m+1}, \ldots] \), which, since the infinite simple continued fraction is unique, shows that \(p/q = [b_1, \ldots, b_m] \) is the \(m \)th convergent to \(x \). If however \(y < 1 \), then \(1/y = [c, b_{m+1}, b_{m+2}, \ldots] \) with \(c \geq 1 \). But \(g/q' = [b_m, b_{m-1}, \ldots, b_2] \) and therefore one of \(c \) and \(b_m \) must be unity for, if not, then \(1/y > 2, g/q' > 2, y + q'/q < 1 < 1/\theta \).

\(^{1}\) Editor's note. In the meantime, R. M. Robinson has proved similar results in the Duke Mathematical Journal, vol. 7 (1940), pp. 354–359. Also the first part of Theorem 1 was observed by P. Fatou, Comptes Rendus de l'Académie des Sciences, Paris, vol. 139 (1904), pp. 1019–1021.
Hence \(x = [b_1, \ldots, b_{m-1}, b_m + c, b_{m+1}, \ldots] \) and \(b_i = a_i \ (i \neq m) \), \(b_m + c = a_m \). Thus \(p/q = [a_1, a_2, \ldots, a_{m-1}, b_m] \) where \(b_m = 1 \) or \(a_m - 1 \). Consequently

\[
p/q = (p_{m-1} + p_{m-2})/(q_{m-1} + q_{m-2}), \quad b_m = 1,
\]

or

\[
p/q = (p_m - p_{m-1})/(q_m - q_{m-1}), \quad b_m = a_m - 1.
\]

The first part of the theorem is proved.

Now let \(p/q = (p_n + \varepsilon p_{n-1})/(q_n + \varepsilon q_{n-1}) \), \(\varepsilon = \pm 1 \), \(p_n/q_n \) being the \(n \)th convergent to \(x = [a_1, \ldots, a_n, x'] = (x' p_n + p_{n-1})/(x' q_n + q_{n-1}) \). Then

\[
q^2 \ | x - p/q | = | x' \varepsilon - 1 | (q_n + \varepsilon q_{n-1})/(x' q_n + q_{n-1}),
\]

which, since \(|\varepsilon| = 1, x' > 1 \), is less than unity if and only if

\[
\varepsilon (x' - q_n/q_{n-1}) < 2.
\]

But this inequality is certainly satisfied when \(\varepsilon \) has the sign opposite to the sign of \(x' - q_n/q_{n-1} \). The second part of the theorem follows.

Irreducible fractions \(p/q \) can be divided into three classes \([o/e], [e/o], [o/o]\) in which \(o \) and \(e \) denote odd and even integers respectively.

Since \(p_n q_{n-1} - p_{n-1} q_n = \pm 1 \) it is clear that consecutive convergents \(p_{n-1}/q_{n-1}, p_n/q_n \) belong to two different classes and hence that \((p_n + \varepsilon p_{n-1})/(q_n + \varepsilon q_{n-1}) \) where \(\varepsilon = \pm 1 \) must belong to the remaining class of irreducible fractions. It follows from Theorem 1 that for any irrational \(x \) infinitely many fractions of each class exist such that

\[
|x - p/q| < 1/q^2.
\]

Theorem 1 in fact determines all such fractions.

This result is due to Scott\(^2\) who used the geometric properties of elliptic modular transformations. Scott also showed that the result is the best possible: for a given class and a fixed \(k \), \(0 < k < 1 \), irrationals exist, dense everywhere on the real axis, such that the inequality \(|x - p/q| < k/q^2 \) is satisfied by only a finite number of fractions in the given class.

To prove the last statement it will be enough to show that, if \(x = [a_1, a_2, \ldots, a_n, \ldots] \) where the \(a_n \) are even integers not less than \(2E + 1 \), where \(E > 1 \), then for every fraction of type \([o/o]\),

\[
\theta = q^2 \ | x - p/q | > 1 - 1/E.
\]

If \(\theta > 1 \), there is nothing to prove. If \(\theta < 1 \), it follows from our theo-

rem that \((p/q\) being irreducible\)

\[
p = p_n + \epsilon p_{n-1}, \quad q = q_n + \epsilon q_{n-1}, \quad \epsilon = \pm 1,
\]

for the convergents to \(x\) are all \([e/o]\) or \([o/e]\). Write \(X = [a_{n+1}, a_{n+2}, \cdots], Y = [a_n, a_{n-1}, \cdots, a_2]\). Then if \(n \geq 2\),

\[
\theta = \frac{(Y + \epsilon)(X - \epsilon)}{XY + 1} = 1 - \frac{2 - \epsilon(X - Y)}{XY + 1} > 1 - \frac{2 + X + Y}{XY + 1},
\]

\[
XY + 1 - E(2 + X + Y) = (X - E)(Y - E) - E^2 - 2E + 1
\]

\[
> (E + 1)^2 - E^2 - 2E + 1 > 0,
\]

\[
\theta > 1 - 1/E.
\]

If \(n = 1\), then \(p = p_1 + 1, q = q_1 = 1, \theta = 1 - [0, a_3, \cdots] > 1 - 1/E.

Raffles College, Singapore

MEASURABILITY AND DISTRIBUTIVITY IN THE THEORY OF LATTICES

M. F. SMILEY

Introduction. Garrett Birkhoff\(^2\) derived the following self-dual symmetric condition that a metric lattice be distributive:

\[
2[\mu(a \cup b \cup c) - \mu(a \cap b \cap c)] = \mu(a \cup b) - \mu(a \cap b) + \mu(a \cup c)
\]

\[
- \mu(a \cap c) + \mu(b \cup c) - \mu(b \cap c).
\]

In a previous note\(^3\) the author introduced and discussed a generalization of Carathéodory’s notion of measurability\(^4\) with respect to an outer measure function \(\mu\) which applies to arbitrary lattices \(L\). The \(\mu\)-measurable elements form a subset \(L(\mu)\) consisting of those elements \(a \in L\) which satisfy

\[
\mu(a \cup b) + \mu(a \cap b) = \mu(a) + \mu(b)
\]

for every \(b \in L\). Closure properties of \(L(\mu)\) were investigated. In par-

\(^1\) Presented to the Society, January 1, 1941. The author wishes to express his gratitude to the referee for his valuable suggestions and comments.

\(^2\) *Lattice Theory*, American Mathematical Society Colloquium Publications, vol. 25, p. 81. We shall adopt the notation and terminology of this work and shall indicate specific references to it by B.

\(^3\) *A note on measure functions in a lattice*, this Bulletin, vol. 46 (1940), pp. 239–241. We shall indicate references to this paper by M.