METHODS OF SUMMATION

This seems to be the generalization of the classical result that a necessary and sufficient condition for the polar components of a matrix \(A \) to be commutative is that \(A \) be a normal matrix.

Queens College

REMARKS ON REGULARITY OF METHODS OF SUMMATION

G. E. Forsythe and A. C. Schaeffer

A doubly infinite matrix \((a_{mn}) \) \((m, n = 1, 2, \cdots)\) is said to be regular, if for every sequence \(x = \{x_n\} \) with limit \(x' \) the corresponding sums \(y_m = \sum_{n=1}^{\infty} a_{mn} x_n \) exist for \(m = 1, 2, \cdots \), and if \(\lim_{m \to \infty} y_m = x' \). An apparently more inclusive definition of regularity is that for each sequence \(x \) with limit \(x' \) the sums defining \(y_m \) shall exist for all \(m \geq m_0(x) \) and \(\lim_{m \to \infty} y_m = x' \). Tamarkin\(^2\) has shown that \((a_{mn}) \) is regular in the latter sense if and only if there exists an \(m_1 \) independent of \(x \) such that the matrix \((a_{mn}) \) \((m \geq m_1, \ n \geq 1)\) is regular in the former sense. Using point set theory in the Banach space \((c) \), he proves a theorem\(^3\) from which follows the result just mentioned. This note presents an elementary proof of that theorem and discusses some related topics.

Theorem 1. Suppose the doubly infinite matrix \((a_{mn}) \) has the property that for each sequence \(x = \{x_n\} \) with limit 0 there exists an \(m_0 = m_0(x) \) such that for all \(m \geq m_0(x) \), \(u_m = \limsup_{k \to \infty} |\sum_{n=1}^{k} a_{mn} x_n| < \infty \). Then there exists an \(m_1 \) such that \(\sum_{n=1}^{\infty} |a_{mn}| < \infty \) for all \(m \geq m_1 \).

If in addition \(\lim_{m \to \infty} u_m = 0 \) for each sequence \(x \) with limit 0, it will follow\(^4\) that there exists an \(N \) such that \(\sum_{n=1}^{\infty} |a_{mn}| \leq N < \infty \), for all \(m \geq m_1 \).

To prove Theorem 1, suppose there were an infinite sequence \(m_1 < m_2 < \cdots \) such that \(\sum_{n=1}^{\infty} |a_{mn}| = \infty \) for \(m \in \{ m_r \} \). Let \(x_1, \cdots, x_{k_1} \) be chosen with unit moduli and with amplitudes such that

1. Presented to the Society, April 11, 1942 under the title A remark on Toeplitz matrices; received by the editors January 22, 1942.
\[
\sum_{n=1}^{k_1} a_{mn}x_n = \sum_{n=1}^{k_1} a_{mn}x_n > 1.
\]

Let \(x_{k_1+1}, \ldots, x_{k_2} \) be chosen with moduli \(1/2 \) and with amplitudes such that
\[
\left| \sum_{n=k_1+1}^{k_2} a_{mn}x_n \right| > 2 + \sum_{n=1}^{k_1} \left| a_{mn}x_n \right|.
\]

Let \(x_{k_2+1}, \ldots, x_{k_3} \) be chosen with moduli \(1/3 \) and with amplitudes such that
\[
\left| \sum_{n=k_2+1}^{k_3} a_{mn}x_n \right| > 3 + \sum_{n=1}^{k_2} \left| a_{mn}x_n \right|.
\]

Writing \(y_m(k) = \sum_{n=1}^{k} a_{mn}x_n \), the sequence \(\{x_n\} \) and integers \(k_1 < k_2 < \cdots \) are thus chosen successively so that \(|y_{m_1}(k_1)| > 1 \), \(|y_{m_2}(k_2)| > 2 \), \(|y_{m_3}(k_3)| > 3 \), \(|y_{m_4}(k_4)| > 4 \), \(|y_{m_5}(k_5)| > 5 \), \(|y_{m_6}(k_6)| > 6 \), \(\cdots \); while \(|x_n| = 1/r \), for \(k_r - 1 < n \leq k_r \). This is a sort of alternating or "sweeping-out" process. So defined, \(\{x_n\} \) is a sequence with limit 0, but \(\limsup_{k \to \infty} \left| \sum_{n=1}^{k} a_{mn}x_n \right| = \infty \), for \(m \in \{m_r\} \). This contradiction completes the proof of Theorem 1.

The matrix \((a_{mn})\) is said to be null-preserving, if for every sequence \(x = \{x_n\} \) with limit 0 the corresponding sums defining \(y_m \) exist for \(m = 1, 2, \cdots \) and if \(\lim_{m \to \infty} y_m = 0 \). An apparently more inclusive definition of null-preserving is that for each sequence \(x \) with limit 0 we have \(u_m = \limsup_{k \to \infty} \left| \sum_{n=1}^{k} a_{mn}x_n \right| < \infty \) for all \(m \geq m_0(x) \) and \(\lim_{m \to \infty} u_m = 0 \). We remark that it is a consequence of Theorem 1 that \((a_{mn})\) is null-preserving in the latter sense if and only if there exists an \(m_1 \) such that the matrix \((a_{mn})\) \((m \geq m_1, n \geq 1)\) is null-preserving in the former sense.\(^6\)

To consider a problem which is related to the above in the method of proof, let each element of a matrix \((a_{mn})\) be either +1 or −1. For \(0 \leq t \leq 1 \) and \(n = 1, 2, \cdots \) let \(\{\phi_n(t)\} \) be the Rademacher orthogonal functions,\(^6\) and let \(y_{mk}(t) = \sum_{n=1}^{k} a_{mn} \phi_n(t) \). Then it is well known\(^7\) that for almost all \(t \), for all \(m = 1, 2, \cdots \) and for all \(\epsilon > 0 \), \(\lim_{k \to \infty} k^{-1/2−\epsilon}y_{mk}(t) = 0 \). It is clear that for a particular fixed \(m \) there is a \(t \) such that \(\lim_{k \to \infty} k^{-1}y_{mk}(t) = 1 \). The problem is to show that there is a \(t \) such that

\(^7\) For references to this and more precise results, see A. Khintchine, *Asymptotische Gesetze der Wahrscheinlichkeitsrechnung*, Ergebnisse der Mathematik, Berlin, 1933, pp. 60–61.
simultaneously for all \(m = 1, 2, \ldots \), \(\lim \sup_{k \to \infty} k^{-1} y_{mk}(t) = 1 \). That there exists such a \(t \) can be shown by using the alternating process of Theorem 1.

Theorem 2 follows immediately from a theorem of Banach.⁸

Theorem 2. If \(E_m \) is a linear manifold satisfying Baire's condition⁹ in a Banach space \(E \) \((m = 1, 2, \ldots)\) and if \(\lim_{m \to \infty} E_m = E \), then there exists an \(m_1 \) such that \(E_{m_1} = E \).

Theorem 2 furnishes a Banach space analogue and a proof of Theorem 1 which is related to Tamarkin's proof. To see this, let \(E \) be the Banach space \((c_0)\) of sequences \(x = \{x_n\} \) convergent to 0, with \(\|x\| = \max_n |x_n| \), and with addition and multiplication by a (complex) scalar defined as usual. Let \((a_{mn})\) be as in Theorem 1. Let \(E_m \) be the subset of \(E \) for which \(\lim \sup_{k \to \infty} |\sum_{n=1}^{k} a_{rn} x_n| < \infty \) for all \(r \geq m \).

The hypotheses of Theorem 2 are satisfied, and from its conclusion it may be proved directly for an arbitrary \(m \geq m_1 \) that \(\sum_{n=1}^{\infty} |a_{mn}| < \infty \).

⁹ See S. Banach, loc. cit., p. 17. By considering a Hamel base for \(E \), G. W. Mackey has remarked to the authors that Theorem 2 is false if the words “satisfying Baire’s condition” are omitted.