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Since | | t fn*(ö| |>0, the sphere | | s - Unk(Ç)\\ S\\ Unh(Ç)\\/2, is non-
vacuous. That such a sphere is a p-set was demonstrated in §3. The 
sphere K we were required to construct has therefore been shown to 
exist, and Theorem 3 is proved. 

LAFAYETTE COLLEGE 

ON THE APPROXIMATION OF FUNCTIONS BY SUMS 
OF ORTHONORMAL FUNCTIONS 

EDWIN N. OBERG 

1. Introduction. The main object of this paper is to derive, in a 
simple manner, upper bounds for the norms of the derivative of 

(1) ] £ a*t>i(x) 

in C and L2 spaces, where the a» are arbitrary constants, and {<f>%(x)} 
is any set of functions on a given finite or infinite interval (a, 6). We 
apply our method, properly modified, first to the case where the <j>i(x) 
are characteristic solutions of conjugate sets of integral equations, 
then to other classes of functions whose first derivatives {<ƒ>/ (x)} are 
orthogonal with respect to a weight function <r(x). Finally, we apply 
our results to the question of convergence of sums1 of type (1) that 
minimize 

ƒ PO) ƒ 0 ) - ] £ ai<i>i(x) dx, m > 0. 

The leading results of our investigation may be summarized briefly 
as follows : 

(A) 
dx »«o a b n \ l / 2 

[22 a<i<j>i{x)}2dx\ 
where Xw is a positive number that increases with n and k(x) is a func-

Presented to the Society, September 5, 1941 under the title Notes on the approxima
tion of functions by sums of orthonormal functions', received by the editors February 2, 
1942. 

1 For the specialized cases when the approximating functions are trigonometric 
sums or polynomials, see D. Jackson, The theory of approximation, Amer. Math. Soc. 
Colloquium Publications vol. 11, 1930, pp. 86-89, 96-101. 
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tion, independent of n, that is less than or equal to a bound M almost 
everywhere. 

>b r d n -12 \ 1/2 

(B) 

^ N"(f tit *M*)]*dA 

where {^%(x)} may be any set of orthonormal functions on (a, ô), 
and Nn, for a given n and arbitrary coefficients a»-, is the least number 
that relates the left- and right-hand sides of (B). 

Somewhat similar investigations have been made by Hille, Szegö, 
and Tamarkin,2 McEwen,3 and Shohat4 but in each case with more 
restricted functions and by methods that are different from ours. 

2. Rough bounds for the derivative of sums of characteristic solu
tions. Let K(x, t) be a given continuous function on an interval 
a^x^kb, a^r^by and let 

K(x, OlKO*, iK*) = X I K(t, x)4>(t)dt 
a J a 

be conjugate integral equations which have K(x, t) as kernel. I t 
is well known5 that, except for the special case when K(x, t) 
=]C?-o0*O*O^*WAt* there exists an infinite set of characteristic val
ues for X, and corresponding sets of characteristic functions, 

0o(*O, 4>iO), • • • , <AnO), • • • , to(x), ypi(x), • • • , ypn(x), • • • 

that satisfy these equations. The set of functions \ypi(x)} can be ad
justed so that all of the characteristic numbers are positive and it can 
be assumed without loss of generality that Xo^Xi^ • • g X n ^ • • . 
Moreover, the sets {4>i(x)} and \^%{x)} can be regarded as separately 
orthonormal on (a, b). In addition to the hypotheses of continuity 
on K(x, t) we assume differentiability with respect to x under the 
integral sign of Jh

aK(x} t)dt and that 

2 Hille, Szegö, and Tamarkin, On some generalizations of a theorem of A. Markoff, 
Duke Math. J. vol. 3 (1937) pp. 729-739. 

3 W. H. McEwen, A note on an extension of Bernstein's theorem. Amer. J. Math, 
vol. 60 (1938) pp. 309-319. 

4 J. Shohat. On a general formula in the theory of Tschebycheff polynomials and its 
application, Trans. Amer. Math. Soc. vol. 29 (1927), p. 569. 

5 See E. Schmidt. Zur theorie der linearen und nichtlinearen Integralgleichungen, 
Math. Ann. vol. 63 (1907) pp. 459-463. 
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rts'H* 
as a function of x exists almost everywhere on (a, b). 

Let a0, ai, • • • , an be any set of coefficients and let 

n n n 

t=0 i=0 t=0 

From (2) it follows that 

d# J a OX 
(t)dt 

whence, as a consequence of Schwarz's inequality, we have 

»*> r d "I2 \ 1 / 2 / s*h » \ 1 / 2 

sJx) I < ( I I — K(x. t) I * 
dx 

Sn(x) \ S ( ƒ f — * (* , O l * ) ( ƒ 5Üx(/)rfA 

By the property of orthonormality of the set {^i(x)}, a n d the fact 
that the X's increase with n, 

/

tb 2 J 2 ^ 2 2 2 A 2 2 Cb 2 

Sn\(t)dt = 2J 0At ^ Xn 2 j ^ = ^ ^n 
a i=0 t=0 ^ a 

(0*. 

The above relation, in view of the fact that the a's are arbitrary, is 
the best possible bound for fbsl\(t)dt in terms of fbsl(t)dt since the 
equality holds when an is the only nonzero coefficient. However, the 
last integral may be replaced by the integral of the square of a sum 
of any n+1 orthonormal functions on the interval (a, b) if the coeffi
cients of this sum are ao, ai, • • • , an. In particular, fbsl(t)dt may be 
replaced by fb

as
2
n(t)dt. 

The previous discussion may be summarized as follows. 

THEOREM A. If the kernel K{x, t) satisfies the hypotheses of the preced
ing discussion, and if sn(x) is any arbitrary sum of <t>o(x), <j>i(x), • • • , 
</>n(x), then 

dx 
Sn(x) ^Mxjj sl(t)dt\ 

where M is a constant, over the parts of the interval (a, b) for which 
Jb

a[dK(x, t)/dx]2dt is bounded. Moreover, if (a, b) is finite and un is 
the maximum of | sn(x) \ on {a, b), then 

(3) 
dx 

Sn{x) ^ M'\nUn M' = M(b - a)1 '2. 
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For special sets of characteristic functions and kernels, closer 
bounds then (3) are obtainable by other means6 than ours. Thus, for 
example, if we consider the particular kernel7 

K(x, t) = x(l - t), 0 ^ x è /, 

= *(1 - x), t g x S 1, 

on the interval O ^ x ^ l , O ^ / ^ l , the integral equation u{x) 
= \JQK(X, t)u(t)dt has as characteristic solutions and corresponding 
characteristic numbers the sets {sin nirx} and {wV2}, respectively. 
The application of (3) gives a bound of order n2un for the derivative 
of a sum of sine functions, which is rough when compared with the 
well known Bernstein's theorem for trigonometric sums.8 However, 
the bound given by (3) is of interest since it applies to a very wide 
class of functions for which it seems impossible to obtain better re
sults unless more restrictive hypotheses are assumed on the kernel or 
on the characteristic functions themselves. 

3. Bernstein's theorem in L2 space for a sum of functions whose 
derivatives are orthogonal with respect to a weight function. Hille, 
Szegö, and Tamarkin9 have established the corresponding MarkofFs 
theorem for Lm spaces when m ^ 1, but only when the sums involved 
are polynomials or trigonometric sums. Our method of proof is en
tirely different from theirs and we are not able to obtain the results 
of this section from their paper. 

Let {(j>%{x)} be any set of functions, not necessarily orthonormal, 
but let the set of first derivatives of these functions be orthogonal with 
respect to a positive weight function <r(x) on the interval (a, b). As
sume that the normalization factor Ni= (Jl<r(x) [fiï (x)]2dx)1/2 in
creases with the subscript i. Let Kn(x, t) =X)?-o</)i(^)^*(0 where 
{^{{x)} is any set of orthonormal functions on (a, b). Let sn(x) de
note any arbitrary sum of the functions <£o(#), <f>i(x), ' • • > 4>n(x)9 and 
let Sn (x) be its first derivative. Let sn(x) =2^?=o#t^(*) where 
&o, ai, • • • , a» are the same coefficients as in sn(x). 

Since 
rh d 

Sn (*) = I — Kn(xt t)sn(t)dt 
J a ÔX 

6 See McEwen, op. cit. pp. 295-296. 
7 The kernel K(x, t) in this instance is the Green's function of the system d2u/dx2 

-f-Aw = 0, w(0 )=w( l )=0 , and thus highly restricted when compared with any kernel 
of a system of form (2). 

8 See Jackson, op. cit. p. 80. 
9 Hille, Szegö, and Tamarkin, op. cit. Footnote 2, 
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it follows from the hypotheses placed on the sets {</>/ (x)}, {Ni}, and 
{&i(x)} that if this equation is multiplied by cr(x)Sn (x) and integrated 
over (a, &), then 

I <r(x) [su (x) ]2dx = I I a(x)sn (x)Kn (x, t)dx sn{t)dt 

«J a L t=0 J L 1=0 J 

= Z a«V J S tf» £ a- = JV° f ïÜ(0*. 

The factor N% is obviously the least number that relates the right-
and left-hand members of the above inequality since the equality 
holds when all but an of the coefficients #i, #2, • • • , an are equal to 
zero. As a result we have this theorem. 

THEOREM B. If {</>i(x)} is a given set of functions, and if there exists 
a positive weight function cr(x) such that the set of f unctions 

<r1/2(*)0o'(*), oU*(x)4>{(x), • • • , <rl'*(xM(*) 

are orthogonal on (a, b) and if sn(x) =yi?-.na»<£»(#) is any arbitrary sum 
of the set </>o(x), <f>i(x), • • • , <f>n(x) and sn(x) =]Ci-oa»^»0*0 *s the sum 
of any arbitrary set of orthonormal f unctions on the interval (a, b), the 
coefficients a0, #i, • • • , an being the same in both sn(x) and sn(x), then 

a b \ i / 2 / r b \1'2 

*(x) W (*) ]2dx ) ^ NJJ [sn(x) ]2dx) 
gives the closest relation between the integrals 

a b v i /2 / Cb \ 1 / 2 

<r(x)[sn (x)]2dxJ and I I [sn(#)]2d#J when a b \ 1/2 

CT(x)[^(x)Ydx) . 
As a first application of the above theorem consider the case when 

both of the sets {<t>i(x)} and {^%{x)} are the normalized Legendre10 

polynomials {(2i+1/2) lf2Pi(x)}. The set of first derivatives of these 
functions are orthogonal11 with respect to the weight function 1 — x2 

16 See, for example, D. Jackson, Fourier series and orthogonal polynomials. The 
Carus Monograph no. 6, pp. 45-68. 

11 See Jackson op. cit. Footnote 10 p. 149. 
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on the interval ( — 1 , 1) so that the hypothesis on {<£/ (x)} holds in 
accord with the above theorem. Since 

2 C+l 2 r n2 2 * + l 2(f i+ 1)! 1 

J - i 2 (« — 1)! 2^ + 1 

we have12 

a +l \ l / 2 / / .+1 \ l / 2 

(1 - x*)[s:(x)]*dx) S (n(n + l))1I2{ I sn{x)dx\ a +i 2 y /2 

sn(x)dx\ . 
Similar results can be obtained with other Jacobi, the Laguerre, and 
the Hermite polynomials.13 In the last instance we take \<t>%{x)} 
H#<(*) / (2*) 1 / 4 (*0 1 / 2 } and |ifc(*)} = { ^ / 4 ^(^)/(27r)1 / 4( i!)1 / 2}. 
Since HI (x) = iHi^1(x)1 then a(x) =e~*2f2 makes the set of functions 
{<Tll2(x)<t>i (x)} orthogonal on (— <*>, + <*>). The normalization factor 
Nn = (Jl<r(x) [ct>: (x) ]Hx)1/2 = n1'2 so that a +oo \ l / 2 / /•+*> \ l / 2 

e~*2'2[sJi(x)}2dx\ Sn^i I <r*%l*{sn(x)]*dx\ . 
Another example is of interest in that it gives an application of the 

above theorem to functions which do not involve polynomials. Let 
Jo(^ix) denote the Bessel functions of zero order where \fXi\ are the 
roots14 of the Bessel functions of the first order, J\{n) = 0. Let 
<t>i(x)=Jo(/Jiix)/ki and faix) = xll2Jo(jj>ix)/ki, where k2 = foxJ2

l(fj,ix)dx 
=
 JO(M*)/2. Since J0' {fiix) = — jJiiJii/Xix) it follows that the set of de

rivatives, {<j>! (x)}, are orthogonal on the interval (0, 1) with respect 
to the weight function <r(x) =x. Thus 

/
x<t>i(x)<t>j (x)dx = (1/kikj) I xJi (fjLix)Jo (fjLjx)dx 

o J o 

^ (viVj/kikj) I xJ\(MX)J\(fxjx)dx = 0 
•J n 

12 It is of interest to compare this result with Bernstein's theorem for polynomials 
in C space. See D. Jackson, Bernstein's theorem and trigonometric approximation, 
Trans. Amer. Math. Soc. vol. 40 (1936) pp. 225-226. 

18 See Jackson op. cit. Footnote 10 p. 225 Problem 5; p. 227 Problem 7; p. 180 
Formula 6. 

14 See, for example, Watson, Theory of Bessel functions, pp. 477-521, 576-596. We 
are making use of the well known formulas, flxJl(fxx)dx^(l/2)[Jl(fi)+Jl¥M] 
-(*//*) [Jk(n)Jk+i(n)] and JlxJkinix)Jk(Mx)dx*=[Jk{ni)Jk(»i) -Jk(w)Jk(vù]/(w-fH) 
when &=0and jfc = l. 
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when iyéj. The normalization factor of x1,2Ji(fxnx) is | /2GO | / 2 1 / 2 so 
that Nn = fox[(t>n (x)]2dx=ix2

nJl(txn)/Jl(iin). But by the well known15 

identity, (2/x) Ji(x) = JQ(X)+J2(X), it is seen that when /xn is a root 
of JI(M) = 0 then Jo(nn) = —JziVn) so that the right-hand side of the 
above equation is fxl which is known16 to be of the order n2. Hence if 

f \ V *f \ V J o M 

Sn{x) = 2L, a>i<i>i(x) = 2^ ai > 
it follows that 

= 0(V)( I #[.Sn(#)]2d#] 

4. Degree of convergence of sums of characteristic solutions. Let 
J0i(#)} and {ipi{x)} be closed infinite sets of orthonormal solutions 
of a system of integral equations of form (2) in which the kernel 
K{x, t) is continuous17 on an interval a^x^bf a^t^b. Let the corre
sponding characteristic numbers be positive and arranged as a non-
decreasing sequence with respect to the subscript i. Letf(x) be a con
tinuous function on a^x^b and let 

oo / r* b \ 2 

Z ) ( ^ I f(x)<t>i(x)dx) 

be convergent for some value of p^l. Then sufficient hypotheses 
have been assumed so that the equation of the first kind 

(5) ƒ(*) = f K(x, t)u(t)dt 
J a 

has a solution u(x) in L2 space.18 

Let b0, bu - - • , bn be arbitrary coefficients and let 

Tn\{x) = — 1 h • • • H y 
Ao Xi An 

Tn(x) = bo^o(x) + bifa(x) + ' • ' + brÜnix). 

15 See Watson op. cit. p. 17. Take n — 1. 
16 See Watson op. cit. p. 506. Take *> = 0, a = 0. 
17 This hypotheses on K(x, t) can be lightened to include kernels that are summable 

and of summable square. See Footnote 18. 
18 See E. Picard, Sur un théorème général relatif aux équations intégrales de première 

espèce et sur quelques problèmes de physiques mathématique, Rend. Cire. Math. Palermo 
vol. 29 (1930) pp. 79-83. 
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By (2) it follows that rn\(x) —fb
aK(x> t)fn(t)dt so that by subtracting 

Tn\(x) from f{x) we have with the aid of Schwarz's inequality, 

a b \ 1 / 2 / r b \ 1 / 2 

K*(x,t)dt) ( J [u{t)-rn{t)]HtJ . 

(6) | / ( * ) - TnX 

The above expression shows that any set of the b's that will make 
fn(t) converge in the mean to u{i) will make rn\{x) converge uniformly 
to f(x) as n becomes infinite. In particular, if bi = f%u(t)\{/i(t)dtf then 

f [u(t)-rn(t)]*dt= jt ( f u(t)h(t)dt) 
J a t=n+l \ * a / 

oo / ,% b \ 2 

= Z (*i\ M4n(t)dt) . 

But this in turn is at most equal to 

(7) - ^ £ (xf fbf(t)<t><(t)dtX 
' »+l - n + 1 

for any p ^ 1 when w is sufficiently large so that Xn + i> 1. 
From (6) and (7) we have the following consequence. 

THEOREM C. If {$»•(#)} and {^(x)} are closed infinite sets of ortho-
normal solutions of the system of equations 

K(x, t)y//(t)dt, $(x) = X I K(t, 
a. J a 

x)4>(t)dt 

corresponding to a set of positive characteristic numbers Xo S Xi ^ • • • 
^ X w ^ • • • , and if K(x, t) is continuous on a^x^b, a^t^b, thent 

if f(x) is continuous on a^x^b and 

oo / /• 6 \ 2 

Z ) ( x ? I f{x)<t>i{x)dx\ 

is convergent for some p^l, there exist sums qn(x) of the set \<}>i(x)} 
such that 

I I IlVn 
ƒ 0 ) - Çn(x) ^ 

\ 7 > - l 

where I\ is an absolute constant and limw=s00 vn = 0. 
In connection with Theorem C a further comment is of interest if 

in (5) we can differentiate ƒ(#) and JlK(x, t)dt s times, the latter under 
the integral sign, and if the set of functions {<f>(8)(x)} are orthogonal 
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with respect to a positive weight function <r(x) on (a, &). In that case 
it follows if f(s)(x) is multiplied by a(x)<f>iS) (x) and integrated over 
(a, 6), 

I <r(x)f* (x)<f>i (x)dx = I I o-(^)Z {x1 t)<f>i (x)dx \u(t)dt 

NI rb 

= — I ti(t)u(t)dt 
X; •/ a 

where iV» is the normalizing factor of <rll2(x)<j>i*\x). The series 
Y<to((Ni/\i)Jlxlsi(t)u(t)dty converges since 

00 / rh é-^(x) \2 

E l ^2{x)f^\x)a^2{x) ^~~-dx) 
* - 0 W a Ni / 

is convergent by virtue of Bessel's inequality. But if limt=s00 Uifh% is 
not zero, then T^lnf fn^i(t)u(t)dt)2 converges and as a consequence 
^iLoQ^Pifaf(x)<l)i(x)dx)2 is convergent for some p^l. 

5. Convergence of the minimizing sums of the integral19 gn 

=IaP(x)\Ax) — Qn(x)\mdx, m>0 when (a, ô) is a finite interval. Let 
ƒ(#) be a continuous function on (a, ft), and let the weight function 
p(x) be summable and have a positive lower bound v on (a, 6). Let 
{0«(#)} be a set of characteristic solutions of conjugate sets of in
tegral equations of form (2). Let these solutions correspond to a 
set of characteristic numbers {X;} that are in the order 0<X 0^Xi 
^ • • • ^Xn . Let Jh

aK{xy t)dt be differentiable with respect to x under 
the integral sign and let J^dKix, t)/dx]2dt as a function of x exist al
most everywhere. Let Qn(x) =E?«o^^i(^) be any sum of the first 
n+1 functions of the set {<t>i(x)}j and let $M(x) denote any one20 

of these that makes gn the least. Let en be the maximum for 
\f(x)—Qn(x)| on (a, b). By following the steps Jackson has taken to 
investigate convergence of minimizing trigonometric sums and poly
nomials21 we are led, by virtue of (3) of Theorem A to the following 
result. 

THEOREM D. If Qn(x) is an arbitrary sum of the first n+1 functions 
of the set {<t>i(x)f, and $n(x) is a corresponding minimizing sum of 

19 For a proof of the existence of minimizing sums see D. Jackson, On functions of 
closest approximation, Trans. Amer. Math. Soc. vol. 22 (1921) pp. 117-128. See also 
vol. 25 (1923) pp. 333-337. 

20 If w ^ l , the minimizing function is unique. See Jackson op. cit. Footnote 19. 
21 See Jackson op. cit. Footnote 1. 



1943] APPROXIMATION OF FUNCTIONS 77 

gn there exists a positive factor L independent of the characteristic 
numbers {A*} and ew such that 

| f{x) — #wO) | S L\n «n. 

Moreover, since L depends upon (f£[dK(x, t)/dx\2dt)in, it is bounded 
ona<xSb except perhaps on a set of points of measure zero. 

Thus, since en is the maximum of \f{x) — Qn(#) | on (a, ft), the ques
tion of convergence of $n(x) tof(x) on the intervals of a ^x ^ &, where 
L exists, is made to depend upon whether sums Qn(x) exist for an 
infinite sequence of values of n such that 

hm Xn en = 0. 
n— oo 

This is insured by Theorem C if the series 

oo / •» b \ 2 

Z)f Xf I f(x)4>i{x)dx\ 

is convergent for some p ^ (1/m) + 1 . 
Theorem D can be strengthened22 considerably through the appli

cation of Theorem B if in addition to the property of orthonormality 
on the set {<t>i{x)}, the set of derivatives {</>/ (x)} are orthogonal on 
(a, b) with respect to a continuous non-vanishing weight function 
a(x). The essential point is that Xn is usually large in comparison with 
the normalizing factor iVn, as for example in the integral equation 
that was cited earlier (p. 71). Here Xn = 0(w2) while Nn of the set of 
derivatives of {sin nx}, that is {n cos nx}, is of order n. 

In the subsequent discussion we shall also assume that 
Ja\dcrll2(x)/dx\dx exists. Using the same definitions and notations 
as in the preceding discussion, we let Tn(x) = $n(x) — Qn(x) and 
rn(x) =f(x)—Qn(x). Let rj be the maximum of |7rw(#)| on (a, b) and 
let XQ be the abscissa at which this maximum is attained. Since 

<rll2(x)wn(x) — <r1/2(>o)7rw(>o) 

= f — [al'2(x)Tn(x)]dx = f V / 2 ( * K ' ( * ) < * * + ( Tn(x)—<Tl'2(x)dx 
J XQ dx J Xo J XQ dx 

for any x on the interval (a, &), we have with the aid of Schwarz's 
inequality, 

22 In this section of the paper we can extend our discussion to the case when the 
interval (a, b) is infinite. The treatment requires further hypotheses on the functions 
<r(x), {<f>i{x) \ and {<f>i (x)}. In general the details are similar and are therefore omitted. 
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<r1/2(x)Tn(x) — <r1,2(xo)wn(xo) | 

£* \ % — Xo 1/2 (j-or(*)[w(*)]ai^iy/f 

+ ƒ Tn(x) rl/2 
dx 

(*) d# 

But since #0 and x are on (#, &) by Theorem B it follows that 

a x \ l / 2 f Ch \ 1 / 2 

<r(*) [*»' (*) ]21 dx | J ^ M <r(a) [xn' (*) ]2J* J 

f*( I Tn(x)dx) ^Nn 

so tha t 

x — #o r 

(8) + | | TTnO) 
#0 

— o-^O) \\dx\ 
dx I 

^ | x - tfo |1/5Ww(ô - a)l^rj + \ x - x0\fiH 

where H is a constant independent of x and Nn. If iVn is large and 

<r(xo) 
X — XQ \ < 

then 
16N2(b - a) 

a1,2(x)wn(x) — a1/2(xo)7Tn(xo) 

TjHa(xo) 
< 

V 
^ — a^ixo) + 

4 16N2
n(b -a) 2 

r l / 2 (*o), 

whence |o"1/2(x)7rn(x)| >(r}/2)cr1/2(xo). If w is the maximum of <T1/2(X) 

on (a, 6), then | T » ( * ) | >(rj/2)all2(x0)/w. 
Let 7w be the minimum of gn. For a value of # on (a, ô) a t a distance 

not greater than a(xo)/16Nl(b — a) from #0, 

Tn > V | 7Tn(x) — Tn(x) 
r(xo) 

16N2
n{b - a) 

Thus, for the case when (rj / 4) (a112(xo)/w) >en we have, since 
Tn < h C h = fap(x)dxt 
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iw /I6[b - a] 2 \ 1 / w 2/m 
(9) * < 1 /9/ x ( y^Nn ) < SlNn en 

<T1,2(Xo) \ V / 

where si is an absolute constant. 
On the other hand, if (rj/4:)(alf2(xo)/w) <en , we have 

V < 
J1/2(X0) 

so that for an Nn sufficiently large, (9) is a universal bound for rj. 
Hence, from the inequality 

| ƒ(*) - $n(x) | ^ | ƒ(*) - Qn(x) | + | *n(x) - Qn(x) I 

= I rn(x) | + | TTnO) | 

we have the following result. 

THEOREM E. If in addition to the hypotheses placed on p(#), ƒ(#), and 
the set {<pi(x)} in Theorem D it is assumed that the set of functions 
{cj>i (x)} are orthogonal with respect to a continuous positive weight func
tion a(x), and if Jl\ dall2(x)/dx\ dx exists, then there exists a constant s2 

independent of Nni e ,̂ and also of x such that 

\f(x) - $n(x)\ ^ s2N
2*™en. 

Theorem E is subject to further refinement if certain further hy
potheses are assumed on the set {<£;(#)}. If the set of functions 
{0/0*0} are continuous on the interval (a, b)t (the condition of or
thogonality only requires that the set {<j>i (x)} with respect to <r(x) 
be integrable L2), and if at the maximum of |7rn(#)|, dTn(x)/dx = 0j 
then by a law of the mean23 for integrals it is seen that 

fx0<r(x) [iTn (x) ]21 dx | fa<r(x) [Tn (X) ]2dx 

XQ\ 

when x is sufficiently close to x0. Thus the first integral on the left-
hand side of (8) can be replaced by 

X - * o | 1 / 2 / Cb r T \ 1 / 2 

(b 

23 By the law of the mean, there exist points £ and c on the intervals | x, XQ\ 
and (a, b), respectively, such that <r(£)[iri (£)]2 = (fï0<r(x) [iri (x)]2\dx\)/\ x-x0\ and 
cr(c)[iTn (c)]2 = (fa<r(x) [wn (x)]2dx)/(b — a). Since ir'(x) is continuous and Tn (x0)^0 it 
follows, since a(x) is positive and bounded on (a, b), that o-(Ö'W (£)]2 can be made 
smaller than o-(c) [irl (c) ]2 by taking x sufficiently close to x0. 



80 E. N. OBERG 

and this leads to a bound of order N1/men for \f(x) — $n(x)\ in con
trast with N2,men of Theorem E. As an example, a relative maximum 
of | Tn(x) | is assured if the following boundary conditions24 are as
sumed on $n(x): ^n{o) — Qn{a), and $n(b) = Qn(b). In that case 
7Tn(a) =irn{b) = 0 and as a consequence of the hypotheses on the func
tions {<f>i (x)}, Tn (x) — 0 at the maximum of | irn(x) | . 

The hypothesis on <r(x) may be lightened to include weight func
tions that vanish at some points along the interval. The only restric
tion required by the proof is that a(x) shall not vanish at the point 
where 17r^(x) | takes on its maximum, and this in turn is assured by 
appropriate boundary conditions on the minimizing function $n(x), 
such as were mentioned in the last paragraph. This last observation 
is of importance in working out details for the convergence of sums in 
terms of the Bessel, Legendre, Laguerre, and the Hermite functions, 
among a great number of others that involve weight functions. The 
details of these discussions follow the above general outline and are 
therefore omitted. 
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24 The placing of a boundary condition on $n(x) does not affect the existence of 
minimizing sums. See for example, D. Jackson, Problems of approximation with in-
tegral boundary conditions, Amer. J. Math. vol. 55 (1933) pp. 153-166. 


