Linear topological spaces
Author:
D. H. Hyers
Journal:
Bull. Amer. Math. Soc. 51 (1945), 1-21
DOI:
https://doi.org/10.1090/S0002-9904-1945-08273-1
Errata, Volume 51:
Bull. Amer. Math. Soc., Volume 51, Number 12 (1945), 1001--1001
MathSciNet review:
0012205
Full-text PDF Free Access
References | Additional Information
- Leon Alaoglu, Weak topologies of normed linear spaces, Ann. of Math. (2) 41 (1940), 252–267. MR 1455, https://doi.org/10.2307/1968829
-
P. Alexandroff and H. Hopf, 1. Topologie, vol. I, Berlin, 1935.
-
S. Banach, 1. Opérations linéaires, Warsaw, 1932.
- Garrett Birkhoff, A note on topological groups, Compositio Math. 3 (1936), 427–430. MR 1556955
- Garrett Birkhoff, Moore-Smith convergence in general topology, Ann. of Math. (2) 38 (1937), no. 1, 39–56. MR 1503323, https://doi.org/10.2307/1968508
- G. D. Birkhoff and O. D. Kellogg, Invariant points in function space, Trans. Amer. Math. Soc. 23 (1922), no. 1, 96–115. MR 1501192, https://doi.org/10.1090/S0002-9947-1922-1501192-9
- S. Bochner and J. von Neumann, Almost periodic functions in groups. II, Trans. Amer. Math. Soc. 37 (1935), no. 1, 21–50. MR 1501777, https://doi.org/10.1090/S0002-9947-1935-1501777-9
- D. G. Bourgin, Linear topological spaces, Amer. J. Math. 65 (1943), 637–659. MR 9104, https://doi.org/10.2307/2371871
- D. G. Bourgin, Some properties of Banach spaces, Amer. J. Math. 64 (1942), 597–612. MR 8116, https://doi.org/10.2307/2371707
- Mahlon M. Day, The spaces 𝐿^{𝑝} with 0<𝑝<1, Bull. Amer. Math. Soc. 46 (1940), 816–823. MR 2700, https://doi.org/10.1090/S0002-9904-1940-07308-2
- Mahlon M. Day, A property of Banach spaces, Duke Math. J. 8 (1941), 763–770. MR 5776
-
M. Eidelheit and S. Mazur, 1. Eine Bemerkung über die Raume von Typus (F), Studia Mathematica vol. 7 (1938) pp. 159-161.
-
G. Fichtenholz, 1. Sur les fonctionelles linéaires, continues au sens généralisé, Rec. Math. (Math. Sbornik) N.S. vol. 4 (1938) pp. 192-213.
-
M. Fréchet, 1. La differentielle dans l'analyse générale, Ann. École Norm. vol. 42 (1925) pp. 293-323.
- Maurice Fréchet, Les espaces abstraits topologiquement affines, Acta Math. 47 (1926), no. 1-2, 25–52 (French). MR 1555210, https://doi.org/10.1007/BF02544107
-
M. Fréchet, 3. Les espaces abstraits, Paris, 1928.
- H. H. Goldstine, Weakly complete Banach spaces, Duke Math. J. 4 (1938), no. 1, 125–131. MR 1546039, https://doi.org/10.1215/S0012-7094-38-00410-7
-
L. M. Graves, 1. Topics in the functional calculus, Bull. Amer. Math. Soc. vol. 41 (1935) pp. 641-662.
- Lawrence M. Graves, On the completing of a Hausdorff space, Ann. of Math. (2) 38 (1937), no. 1, 61–64. MR 1503325, https://doi.org/10.2307/1968510
- T. H. Hildebrandt and Lawrence M. Graves, Implicit functions and their differentials in general analysis, Trans. Amer. Math. Soc. 29 (1927), no. 1, 127–153. MR 1501380, https://doi.org/10.1090/S0002-9947-1927-1501380-6
-
D. H. Hyers, 1. Integrals and functional equations in linear topological spaces, California Institute of Technology thesis, 1937.
-
D. H. Hyers, 2. On functional equations in linear topological spaces, Proc. Nat. Acad. Sci. U.S.A. vol. 23 (1937) pp. 496-499.
- D. H. Hyers, Linear topological spaces, Bull. Amer. Math. Soc. 51 (1945), 1–21. MR 12205, https://doi.org/10.1090/S0002-9904-1945-08273-1
- D. H. Hyers, Locally bounded linear topological spaces, Rev. Ci. (Lima) 41 (1939), 555-574. MR 1915
- D. H. Hyers, Pseudo-normed linear spaces and abelian groups, Duke Math. J. 5 (1939), 628–634. MR 348
- D. H. Hyers, A generalization of Fréchet’s differential, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 315–316. MR 4714, https://doi.org/10.1073/pnas.27.6.315
- R. C. James, Linearly arc-wise connected topological Abelian groups, Ann. of Math. (2) 44 (1943), 93–102. MR 7978, https://doi.org/10.2307/1969068
- R. C. James, Topological groups as subgroups of linear topological spaces, Duke Math. J. 10 (1943), 441–453. MR 8818
-
A. Kolmogoroff, 1. Zur Normierbarkeit eines topologischen linearen Raumes, Studia Mathematica vol. 5 (1934) pp. 29-33.
-
J. P. LaSalle, 1. Pseudo-normed linear sets over valued rings, California Institute of Technology Thesis, 1941.
- J. P. LaSalle, Pseudo-normed linear spaces, Duke Math. J. 8 (1941), 131–135. MR 3447
- J. P. Lasalle, Topology based upon the concept of a pseudo-norm, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 448–451. MR 4749, https://doi.org/10.1073/pnas.27.9.448
- George W. Mackey, On infinite dimensional linear spaces, Proc. Nat. Acad. Sci. U.S.A. 29 (1943), 216–221. MR 8638, https://doi.org/10.1073/pnas.29.7.216
- George W. Mackey, On convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A. 29 (1943), 315–319 and Erratum 30,24. MR 9087, https://doi.org/10.1073/pnas.29.10.315
-
S. Mazur and W. Orlicz, 1. Über Folgen linearen Operationen, Studia Mathematica vol. 4 (1933) pp. 152-157.
-
A. D. Michal, 1. Differential calculus in linear topological spaces, Proc. Nat. Acad. Sci. U.S.A. vol. 24 (1938) pp. 340-342.
- A. D. Michal, General differential geometries and related topics, Bull. Amer. Math. Soc. 45 (1939), 529–563. MR 172, https://doi.org/10.1090/S0002-9904-1939-07029-8
- A. D. Michal, Differentials of functions with arguments and values in topological abelian groups, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 356–359. MR 2705, https://doi.org/10.1073/pnas.26.5.356
-
A. D. Michal, 4. First order differentials of functions with arguments and values in topological abelian groups, Revista de Ciencias (in press).
- A. D. Michal, Higher order differentials of functions with arguments and values in topological abelian groups, Rev. Ci. (Lima) 43 (1941), 155–176. MR 4715
-
A. D. Michal and E. W. Paxson, 1. La differentielle dans les espaces abstraits linéaires avec une topologie, C. R. Acad. Sci. Paris vol. 202 (1936) pp. 1741-1743.
-
A. D. Michal and E. W. Paxson, 2. The differential in abstract linear spaces with a topology, Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie vol. 29 (1936) pp. 106-121.
- Knox Millsaps, Differential calculus in topological groups. I, Rev. Ci. (Lima) 44 (1942), 485–492. MR 10783
- Knox Millsaps, Differential calculus in topological groups. II, Rev. Ci. (Lima) 45 (1943), 45–52. MR 10784
- E. H. Moore and H. L. Smith, A General Theory of Limits, Amer. J. Math. 44 (1922), no. 2, 102–121. MR 1506463, https://doi.org/10.2307/2370388
-
E. W. Paxson, 1. Analysis in linear topological spaces, California Institute of Technology Thesis, 1937.
- E. W. Paxson, Sur un espace fonctionnel abstrait, Rev. Ci. (Lima) 42 (1940), 817–821 (French). MR 4074
- E. W. Paxson, Les équations différentielles dans les espaces linéaires et topologiques, Rev. Ci. (Lima) 42 (1940), 823–826 (French). MR 4075
-
E. W. Paxson, 4. Linear topological groups, Ann. of Math. vol. 40 (1938) pp. 575-580.
- R. S. Phillips, Integration in a convex linear topological space, Trans. Amer. Math. Soc. 47 (1940), 114–145. MR 2707, https://doi.org/10.1090/S0002-9947-1940-0002707-3
-
E. J. Pinney, 1. The calculus of variations in abstract spaces and related topics, California Institute of Technology Thesis, 1942.
-
L. Pontrjagin, 1. Topological groups, Princeton, 1939.
- Friedrich Riesz, Über lineare Funktionalgleichungen, Acta Math. 41 (1916), no. 1, 71–98 (German). MR 1555146, https://doi.org/10.1007/BF02422940
-
J. Schauder, 1. Der Fixpunktsatz in Funktionalraumen, Studia Mathematica vol. 2, pp. 171-180.
-
V. Šmulian, 1. Linear topological spaces and their connection with Banach spaces, C. R. (Doklady) Acad. Sci. URSS. vol. 22 (1939) pp. 471-473.
- A. E. Taylor, The weak topologies of Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 25 (1939), 438–440. MR 652, https://doi.org/10.1073/pnas.25.8.438
- Angus E. Taylor, The weak topologies of Banach spaces, Rev. Ci. (Lima) 44 (1942), 45–63. MR 6602
- John W. Tukey, Convergence and Uniformity in Topology, Annals of Mathematics Studies, no. 2, Princeton University Press, Princeton, N. J., 1940. MR 0002515
- John von Neumann, On complete topological spaces, Trans. Amer. Math. Soc. 37 (1935), no. 1, 1–20. MR 1501776, https://doi.org/10.1090/S0002-9947-1935-1501776-7
-
J. von Neumann, 2. Zur Algebra der Funktionaloperatoren und theorie der normalen Operatoren, Math. Ann. vol. 102 (1929) pp. 370-427.
- A. Tychonoff, Ein Fixpunktsatz, Math. Ann. 111 (1935), no. 1, 767–776 (German). MR 1513031, https://doi.org/10.1007/BF01472256
- John V. Wehausen, Transformations in linear topological spaces, Duke Math. J. 4 (1938), no. 1, 157–169. MR 1546041, https://doi.org/10.1215/S0012-7094-38-00412-0
-
A. Weil, 1. Sur les espaces à structure uniforme, Actualités Scientifiques et Industrielles, No. 551, Paris, 1938.
- Hermann Weyl, On the differential equations of the simplest boundary-layer problems, Ann. of Math. (2) 43 (1942), 381–407. MR 6294, https://doi.org/10.2307/1968875
Additional Information
DOI:
https://doi.org/10.1090/S0002-9904-1945-08273-1