NOTE ON A THEOREM OF MURRAY

GEORGE W. MACKEY

1. Introduction. In a recent paper¹ [1]² Murray has shown that in any reflexive separable Banach space \mathfrak{B} every closed subspace \mathfrak{M} admits what he calls a quasi-complement, that is, a second closed subspace \mathfrak{N} such that $\mathfrak{M} \cap \mathfrak{N} = 0$ and such that $\mathfrak{M} + \mathfrak{N}$, the smallest subspace containing both \mathfrak{M} and \mathfrak{N} , is dense in \mathfrak{B} . It is the purpose of this note to give a simpler proof of the following somewhat more general theorem.

THEOREM. Let \mathfrak{B} be a separable normed linear space (not necessarily reflexive or even complete) and let \mathfrak{M} be a closed subspace of \mathfrak{B} . Then there exists a second closed subspace \mathfrak{N} such that $\mathfrak{M} \cap \mathfrak{N} = 0$ and $\mathfrak{M} + \mathfrak{N}$ is dense in \mathfrak{B} .

In proving this theorem it is convenient to make use of the notion of closed subspace of a linear system discussed at length in Chapter III of [2]. We repeat the necessary definitions here. A linear system X_L is an abstract linear space X together with a linear subspace L of the space X^* of all linear³ functionals defined on X. If l(x) = 0 for all l in L implies that x=0 (that is, if L is total) we say that X_L is a regular linear system. If M is a subspace of X [L] we denote by M' the set of all l in L [x in X] such that l(x)=0 for all x in X [l in L]. It is clear that $M\subseteq N$ implies $N'\subseteq M'$ and that $M''\supseteq M$. Since $M''' = (M'')'\subseteq M'$ and since $M''' = (M')''\supseteq M'$ it follows that M' = M''' and hence that M = M'' if and only if M is of the form N'. A subspace having either and hence both of these properties is said to be closed. We observe that the operation ' sets up a one-to-one inclusion inverting correspondence between the closed subspaces of X and L respectively.

2. Two lemmas. The proof of the theorem is based essentially on the following lemma.

LEMMA 1. Let X_L be a regular linear system such that both X and L are \aleph_0 dimensional, that is, have \aleph_0 independent generators. Then if M

Received by the editors August 20, 1945.

 $^{^{1}}$ The author is indebted to Professor Murray for letting him read this paper in manuscript form and for several helpful discussions during the preparation of the present note.

² Numbers in brackets refer to the bibliography.

³ By linear we mean additive and homogeneous.

is any closed subspace of X_L there exists a second closed subspace N of X_L such that M + N = X and M' + N' = L.

The proof of Lemma 1 is an easy consequence of a second lemma which is proved in its present form on page 171 of [2] and in other forms elsewhere but which we prove again here for completeness.

LEMMA 2. Let X_L be as in Lemma 1. Then there exist sequences of elements x_1, x_2, \cdots and l_1, l_2, \cdots of X and L respectively such that $x_1 + x_2 + \cdots = X, l_1 + l_2 + \cdots = L$ and $l_i(x_j) = \delta_i^{j}$ for $i, j = 1, 2, \cdots$.

PROOF. Let y_1, y_2, \cdots and m_1, m_2, \cdots generate X and L respectively. We define x_1, x_2, \cdots and l_1, l_2, \cdots by induction. Let $l_1 = m_1$ and let $x_1 = y_{n1}/m_1(y_{n1})$ where n_1 is the first integer such that $m_1(y_{n1}) \neq 0$. Suppose that x_1, x_2, \cdots, x_k and l_1, l_2, \cdots, l_k have been defined. If k is odd let n_0 be the first integer such that $y_{n_0} \notin x_1 + x_2 + \cdots + x_k$ and let $x_{k+1} = y_{n_0} - (l_k(y_{n_0})x_k + \cdots + l_1(y_{n_0})x_1)$. Then let \bar{n} be the first integer such that $m_n(x_{k+1}) \neq 0$ and let $l_{k+1} = (m_n - (m_n(x_k)l_k + \cdots + m_n(x_1)l_1))/m_n(x_{k+1})$. If k is even let n_0 be the first integer such that $m_{n_0} \notin l_1 + l_2 + \cdots + l_k$ and let $l_{k+1} = m_{n_0} - (m_{n_0}(x_k)l_k + \cdots + m_{n_0}(x_1)l_1)$. Then let \bar{n} be the first $l_{k+1}(y_n) \neq 0$ and let $x_{k+1} = (y_n - (l_k(y_n)x_k + \cdots + l_1(y_n)x_1))/l_{k+1}(y_n)$. It follows at once by induction that $l_i(x_i) = \delta_i^i$ for $i, j=1, 2, \cdots$ and it is clear that $X = x_1 + x_2 + \cdots$ and $L = l_1 + l_2 + \cdots$.

PROOF OF LEMMA 1. For definiteness we shall assume that M and M' are infinite-dimensional. The only difference in the contrary case is that certain infinite sequences must be replaced by finite ones. That Lemma 2 is true when X and L are finite-dimensional is obvious. Applying Lemma 2 to M and the linear functionals on M defined by the members of L we may infer the existence of sequences of elements x_1, x_2, x_3, \cdots and m_1, m_2, m_3, \cdots of M and L respectively such that $x_1 + x_2 + \cdots = M$, $M' + m_1 + m_2 + \cdots = L$ and $m_i(x_i) = \delta_i^{i}$ for $i, j = 1, 2, \cdots$. Similarly by applying Lemma 2 to M' and the linear functionals on M' defined by members of X and remembering that M'' = M we may infer the existence of sequences of elements f_1, f_2, f_3, \cdots and z_1, z_2, z_3, \cdots of M' and X respectively such that $f_1 + f_2 + \cdots = M', M + z_1 + z_2 + \cdots = X$ and $f_i(z_i) = \delta_i^{i}$ for $i, j = 1, 2, \cdots$. Now for each i and $j = 1, 2, \cdots$ let

$$y_j = z_j - (m_1(z_j)x_1 + m_2(z_j)x_2 + \cdots + m_j(z_j)x_j),$$

$$l_i = m_i - (m_i(z_1)f_1 + m_i(z_2)f_2 + \cdots + m_i(z_{i-1})f_{i-1}),$$

where f_0 and z_0 are to be taken as zero. Then keeping in mind the fact

that $f_i(z_i) = m_i(x_i) = \delta_i^j$ and $f_i(x_i) = 0$ for $i, j = 1, 2, \cdots$ it is easy to verify that $l_i(y_i) = 0$ and $f_i(y_i) = l_i(x_i) = \delta_i^j$. The statement of the lemma now follows at once on setting $N = y_1 + y_2 + \cdots$. In fact since $x_1 + x_2 + \cdots + y_1 + y_2 + \cdots = x_1 + x_2 + \cdots + z_1 + z_2 + \cdots = M + z_1$ $+ z_2 + \cdots = X$ and $l_1 + l_2 + \cdots + f_1 + f_2 + \cdots = l_1 + l_2 + \cdots + m_1$ $+ m_2 + \cdots = M' + m_1 + m_2 + \cdots = L$, it is easy to see that $N' = l_1$ $+ l_2 + \cdots$ and $N'' = y_1 + y_2 + \cdots$. Thus N'' = N so that N is closed and M + N = X while M' + N' = L.

3. Proof of the theorem. Since \mathfrak{B} is separable it is clear that \mathfrak{B} \mathfrak{M} is also.⁴ It follows then from Théorème 4 on page 124 of [3] that there exists a countable total set of members of the conjugate of $\mathfrak{B}|\mathfrak{M}$ and a countable total set of members of the conjugate of \mathfrak{B} . Now every member of the conjugate of $\mathfrak{B} \mid \mathfrak{M}$ has associated with it in an obvious fashion a member of the conjugate of \mathfrak{B} which vanishes throughout \mathfrak{M} . Thus the first countable total set defines a countable set of elements of the conjugate of \mathfrak{B} the intersections of the null spaces of which is \mathfrak{M} . Denote the linear span of these two countable subsets of the conjugate of \mathfrak{B} by L. Since \mathfrak{M} and \mathfrak{B} are separable there exists a dense countable set in B a subset of which is a dense set in \mathfrak{M} . Let X be the linear span of this countable set and let $M = \mathfrak{M} \cap X$. It is obvious that the X, L and M so defined satisfy the hypotheses of Lemma 1 and that the closures of M and X are \mathfrak{M} and \mathfrak{B} respectively. That M is closed as a subspace of the linear system X_L follows from the fact that \mathfrak{M} is an intersection of null spaces of members of L. Let N be the closed subspace of X_L whose existence is guaranteed by Lemma 1. We define \mathfrak{N} as the closure (in \mathfrak{B}) of N. Since $\mathfrak{M} + \mathfrak{N} \supseteq M + N = X$ it is clear that $\mathfrak{M} + \mathfrak{N}$ is dense in \mathfrak{B} . Suppose that $x \in \mathfrak{M} \cap \mathfrak{N}$. Since \mathfrak{M} is the closure of M every element in M' vanishes throughout \mathfrak{M} . Similarly every element in N' vanishes throughout \mathfrak{N} . Thus every element in M' + N' = L vanishes on x. But L is total. Therefore x = 0. Thus $\mathfrak{M} \cap \mathfrak{N} = 0$ and the theorem is proved.

4. **Remarks.** Murray's paper closes with a proof that in reflexive spaces quasi-complements which are not at the same time complements⁵ are very non-unique in the sense that every such both properly contains and is properly contained in other quasi-complements. This theorem and its proof may be extended to the nonreflexive case (but not the incomplete one) by considering the closed subspaces of the linear systems \mathfrak{B}_A and \mathfrak{A}_B where \mathfrak{A} is the conjugate of \mathfrak{B} rather than those of the Banach spaces \mathfrak{A} and \mathfrak{B} . The needed fact that the linear

[•] Here $\mathfrak{B}|\mathfrak{M}$ denotes the quotient or difference space of $\mathfrak{B} \mod \mathfrak{M}$.

⁵ Complements of course are not unique either.

union of a closed subspace with a finite-dimensional one is again closed follows from Theorem III-1 of [2]. The trouble when \mathfrak{B} is not complete is that \mathfrak{M}' and \mathfrak{N}' may be complementary even when \mathfrak{M} and \mathfrak{N} are not. That this can indeed happen is shown by the first example at the bottom of page 173 of [2].

Using this same device one may carry over Murray's theory of the connection between quasi-complements and closed projections almost word for word to the nonreflexive and noncomplete case.

Making further use of the methods and theorems of Chapter III of [2] one can show that if \mathfrak{B} is separable and \mathfrak{M} is a closed subspace of \mathfrak{B} such that neither \mathfrak{M} nor $\mathfrak{B} | \mathfrak{M}$ is finite-dimensional then the quasicomplement of \mathfrak{M} can always be selected so as not to be a complement and that whenever \mathfrak{B} is complete and \mathfrak{M} and \mathfrak{N} are quasi-complementary and not complementary then \mathfrak{B} has infinitely many linearly independent elements mod $\mathfrak{M} + \mathfrak{N}$.

BIBLIOGRAPHY

1. F. J. Murray, Quasi-complements and closed projections in reflexive Banach spaces, Trans. Amer. Math. Soc. vol. 58 (1945) pp. 77–95.

2. G. W. Mackey, On infinite-dimensional linear spaces, Trans. Amer. Math. Soc. vol. 57 (1945) pp. 155-207.

3. S. Banach, Théorie des operations linéaires, Warsaw, 1932.

HARVARD UNIVERSITY