Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Areolar monogenic functions
HTML articles powered by AMS MathViewer

by R. N. Haskell PDF
Bull. Amer. Math. Soc. 52 (1946), 332-337
  • J. H. Binney, An elliptic system of integral equations on summable functions, Trans. Amer. Math. Soc. 37 (1935), no. 2, 254–265. MR 1501786, DOI 10.1090/S0002-9947-1935-1501786-X
  • Nicolas Ciorănescu, Sur un problème pour les fonctions harmoniques dans un cercle, Bull. École Polytech. Bucharest [Bul. Politechn. Bucureşti] 13 (1942), 26–30 (French). MR 13201
  • John De Cicco, Survey of polygenic functions, Scripta Math. 11 (1945), 51–56. MR 12684
  • 4. G. C. Evans, An elliptic system corresponding to Poisson’s equation, Acta Univ. Szeged, vol. 6 (1932-1934) pp. 27-33. 5. E. Kasner, General theory of polygenic or non-monogenic functions. The derivative congruence of circles, Proc. Nat. Acad. Sci. U.S.A. vol. 14 (1928) pp. 75-82. 6. O. D. Kellogg, Foundations of potential theory, Berlin, 1929. 7. D. Menchoff, Les conditions de monogénéité, Actualités Scientifiques et Industrielle, No. 329, Paris, 1936. 8. D. Pompeiu, Sur une classe de fonctions d’une variable complex, Rend. Circ. Mat. Palermo vol. 33 (1912) pp. 108-113. 9. S. Saks, Theory of the integral, New York, 1937.
Additional Information
  • Journal: Bull. Amer. Math. Soc. 52 (1946), 332-337
  • DOI:
  • MathSciNet review: 0015178