The Kline sphere characterization problem
HTML articles powered by AMS MathViewer
- by R. H. Bing PDF
- Bull. Amer. Math. Soc. 52 (1946), 644-653
References
- Dick Wick Hall, A partial solution of a problem of J. R. Kline, Duke Math. J. 9 (1942), 893–901. MR 7486
- Dick Wick Hall, A note on primitive skew curves, Bull. Amer. Math. Soc. 49 (1943), 935–936. MR 9442, DOI 10.1090/S0002-9904-1943-08065-2 3. F. B. Jones, Bull. Amer. Math. Soc. Abstract 48-11-340. 4. C. Kuratowski, Une caractérisation topologique de la surface de la sphère, Fund. Math. vol. 13 (1929) pp. 307-318.
- Leo Zippin, A study of continuous curves and their relation to the Janiszewski-Mullikin theorem, Trans. Amer. Math. Soc. 31 (1929), no. 4, 744–770. MR 1501509, DOI 10.1090/S0002-9947-1929-1501509-1
- Leo Zippin, On Continuous Curves and the Jordan Curve Theorem, Amer. J. Math. 52 (1930), no. 2, 331–350. MR 1506758, DOI 10.2307/2370687
- R. L. Wilder, A converse of the Jordan-Brouwer separation theorem in three dimensions, Trans. Amer. Math. Soc. 32 (1930), no. 4, 632–657. MR 1501556, DOI 10.1090/S0002-9947-1930-1501556-8
- Schieffelin Claytor, Topological immersion of Peanian continua in a spherical surface, Ann. of Math. (2) 35 (1934), no. 4, 809–835. MR 1503198, DOI 10.2307/1968496
- Robert L. Moore, Concerning a set of postulates for plane analysis situs, Trans. Amer. Math. Soc. 20 (1919), no. 2, 169–178. MR 1501119, DOI 10.1090/S0002-9947-1919-1501119-X
- Egbertus R. van Kampen, On some characterizations of $2$-dimensional manifolds, Duke Math. J. 1 (1935), no. 1, 74–93. MR 1545866, DOI 10.1215/S0012-7094-35-00108-9
Additional Information
- Journal: Bull. Amer. Math. Soc. 52 (1946), 644-653
- DOI: https://doi.org/10.1090/S0002-9904-1946-08614-0
- MathSciNet review: 0016645