On averages of Newtonian potentials
HTML articles powered by AMS MathViewer
- by Maxwell O. Reade PDF
- Bull. Amer. Math. Soc. 53 (1947), 321-331
References
-
1. H. E. Bray, Proof of a formula for an area, Bull. Amer. Math. Soc. vol. 29 (1923) pp. 264-270.
- E. F. Beckenbach and Maxwell Reade, Mean-values and harmonic polynomials, Trans. Amer. Math. Soc. 53 (1943), 230–238. MR 7831, DOI 10.1090/S0002-9947-1943-0007831-X
- Griffith C. Evans, On potentials of positive mass. I, Trans. Amer. Math. Soc. 37 (1935), no. 2, 226–253. MR 1501785, DOI 10.1090/S0002-9947-1935-1501785-8
- Griffith C. Evans, Potentials of positive mass. II, Trans. Amer. Math. Soc. 38 (1935), no. 2, 201–236. MR 1501809, DOI 10.1090/S0002-9947-1935-1501809-8 5. O. Frostman, Potential d’équilibre et capacité des ensembles, avec quelques applications à la théorie des fonctions, Thesis, Lund, 1935. 6. T. Radó, Subharmonic functions, Berlin, 1937.
- Maxwell Reade, Some remarks on subharmonic functions, Duke Math. J. 10 (1943), 531–536. MR 8447
- P. Reichelderfer and L. Ringenberg, The extension of rectangle functions, Duke Math. J. 8 (1941), 231–242. MR 4876, DOI 10.1215/S0012-7094-41-00817-7
- Frédéric Riesz, Sur les fonctions subharmoniques et leur rapport à la théorie du potentiel, Acta Math. 54 (1930), no. 1, 321–360 (French). MR 1555311, DOI 10.1007/BF02547526 10. S. Saks, Theory of the integral, New York, 1937. 11. J. M. Thompson, Distribution of mass for averages of Newtonian potential functions, Bull. Amer. Math. Soc. vol. 41 (1935) pp. 744-752.
Additional Information
- Journal: Bull. Amer. Math. Soc. 53 (1947), 321-331
- DOI: https://doi.org/10.1090/S0002-9904-1947-08791-7
- MathSciNet review: 0020176