Sequences of ideal solutions in the Tarry-Escott problem
HTML articles powered by AMS MathViewer
- by H. L. Dorwart PDF
- Bull. Amer. Math. Soc. 53 (1947), 381-391
References
-
1. J. L. Burchnall and T. W. Chaundy, A type of magic square in Tarry’s problem, Quart. J. Math. Oxford Ser. vol. 8 (1937) pp. 119-130.
- Jack Chernick, Ideal Solutions of the Tarry-Escott Problem, Amer. Math. Monthly 44 (1937), no. 10, 626–633. MR 1524121, DOI 10.2307/2301481 3. L. E. Dickson, Introduction to the theory of numbers, Chicago, 1929, pp. 49-58. 4. L. E. Dickson, History of the theory of numbers, Washington, 1920, vol. 2, chap. 24.
- H. L. Dorwart and O. E. Brown, The Tarry-Escott Problem, Amer. Math. Monthly 44 (1937), no. 10, 613–626. MR 1524120, DOI 10.2307/2301480
- Albert Gloden, Mehrgradige Gleichungen, P. Noordhoff, Groningen, 1944 (German). 2d ed; Mit einem Vorwort von Maurice Kraitchik. MR 0019638
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, at the Clarendon Press, 1954. 3rd ed. MR 0067125
- Alfred Moessner and Werner Schulz, Über Potenzsummen ganzer rationaler Zahlen, Math. Z. 41 (1936), no. 1, 340–344 (German). MR 1545622, DOI 10.1007/BF01180423
Additional Information
- Journal: Bull. Amer. Math. Soc. 53 (1947), 381-391
- DOI: https://doi.org/10.1090/S0002-9904-1947-08807-8
- MathSciNet review: 0019640