Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Sequences of ideal solutions in the Tarry-Escott problem
HTML articles powered by AMS MathViewer

by H. L. Dorwart PDF
Bull. Amer. Math. Soc. 53 (1947), 381-391
References
    1. J. L. Burchnall and T. W. Chaundy, A type of magic square in Tarry’s problem, Quart. J. Math. Oxford Ser. vol. 8 (1937) pp. 119-130.
  • Jack Chernick, Ideal Solutions of the Tarry-Escott Problem, Amer. Math. Monthly 44 (1937), no. 10, 626–633. MR 1524121, DOI 10.2307/2301481
  • 3. L. E. Dickson, Introduction to the theory of numbers, Chicago, 1929, pp. 49-58. 4. L. E. Dickson, History of the theory of numbers, Washington, 1920, vol. 2, chap. 24.
  • H. L. Dorwart and O. E. Brown, The Tarry-Escott Problem, Amer. Math. Monthly 44 (1937), no. 10, 613–626. MR 1524120, DOI 10.2307/2301480
  • Albert Gloden, Mehrgradige Gleichungen, P. Noordhoff, Groningen, 1944 (German). 2d ed; Mit einem Vorwort von Maurice Kraitchik. MR 0019638
  • G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, at the Clarendon Press, 1954. 3rd ed. MR 0067125
  • Alfred Moessner and Werner Schulz, Über Potenzsummen ganzer rationaler Zahlen, Math. Z. 41 (1936), no. 1, 340–344 (German). MR 1545622, DOI 10.1007/BF01180423
Additional Information
  • Journal: Bull. Amer. Math. Soc. 53 (1947), 381-391
  • DOI: https://doi.org/10.1090/S0002-9904-1947-08807-8
  • MathSciNet review: 0019640