INNER PRODUCTS IN NORMED LINEAR SPACES

ROBERT C. JAMES

Let T be any normed linear space [1, p. 53]. Then an inner product is defined in T if to each pair of elements x and y there is associated a real number (x, y) in such a way that $(x, y) = (y, x)$, $\|x\|^2 = (x, x)$, $(x, y+z) = (x, y) + (x, z)$, and $(tx, y) = t(x, y)$ for all real numbers t and elements x and y. An inner product can be defined in T if and only if any two-dimensional subspace is equivalent to Cartesian space [5]. A complete separable normed linear space which has an inner product and is not finite-dimensional is equivalent to (real) Hilbert space, while every finite-dimensional subspace is equivalent to Euclidean space of that dimension. Any complete normed linear space T which has an inner product is characterized by its (finite or transfinite) cardinal "dimension-number" n. It is equivalent to the space of all sets $x = (x_1, x_2, \cdots)$ of n real numbers satisfying $\sum x_i^2 < +\infty$, where $\|x\| = (\sum x_i^2)^{1/2}$ [7, Theorem 32]. Various necessary and sufficient conditions for the existence of an inner product in normed linear spaces of two or more dimensions are known. Two such conditions are that $\|x+y\|^2 + \|x-y\|^2 = 2(\|x\|^2 + \|y\|^2)$ for all x and y, and that $\lim_{n \to \infty} \|nx+y\| - \|nx\| = 0$ whenever $\|x\| = \|y\|$ ([5] and [4, Theorem 6.3]). A characterization of inner product spaces of three or more dimensions is that there exist a projection of unit norm on each two-dimensional subspace [6, Theorem 3]. Other characterizations valid for three or more dimensions will be given here, expressed by means of orthogonality, hyperplanes, and linear functionals.

A hyperplane of a normed linear space is any closed maximal linear subset M, or any translation $x+M$ of M. A hyperplane is a supporting hyperplane of a convex body S if its distance from S is zero and it does not contain an interior point of S; it is tangent to S at x if it is the only supporting hyperplane of S containing x [8, pp. 70-74]. It will be said that an element x_0 of T is orthogonal to y ($x_0 \perp y$) if and only if $\|x_0 + ky\| \geq \|x_0\|$ for all k, which is equivalent to requiring the existence of a nonzero linear functional f such that $f(x_0) = \|f\| \|x_0\|$ and $f(y) = 0$, or that $x_0 + y$ belong to a supporting hyperplane of the sphere.

Presented to the Society, November 2, 1946; received by the editors December 31, 1946.

1 Numbers in brackets refer to the references at the end of the paper.
2 "Equivalent" meaning isometric under a linear transformation [1, p. 180]. The equivalence to (real) Hilbert space follows by reasoning similar to that of [10, pp. 3-16].
\[\|x\| \leq \|x_0\| \] at the point \(x_0 \) [4, Theorem 2.1 and §5]. In a space with an inner product, \(x \perp y \) if and only if \((x, y) = 0 \).

Orthogonality is said to be additive on the right if and only if \(z \perp x \) and \(z \perp y \) imply \(z \perp x + y \). Clearly \(x \perp x \) implies \(x = 0 \), while \(x \perp y \) implies \(ax \perp by \) for any numbers \(a \) and \(b \). Every element is orthogonal to at least one hyperplane through the origin, this hyperplane being unique for any given element if and only if: (1) For any \(x \) \((\neq 0)\) and \(y \) there is a unique number \(a \) with \(x \perp ax + y \); (2) The unit sphere \(\|x\| \leq 1 \) of \(T \) has a tangent hyperplane at each point; (3) The norm is Gateaux differentiable; or (4) Orthogonality is additive on the right [4, Theorems 4.2, 5.1].

Orthogonality is said to be additive on the left if and only if \(x \perp z \) and \(y \perp z \) imply \(x + y \perp z \). Orthogonality is not symmetric in general, and there does not necessarily exist a hyperplane orthogonal to a given element (Theorems 1 and 5). Additivity on the left does not imply strict convexity;\(^3\) nor conversely, but a normed linear space is strictly convex if and only if: (1) For any \(x \) \((\neq 0)\) and \(y \) there is a unique number \(a \) with \(x + y \perp x \); or (2) No supporting hyperplane has more than one point of contact [4, Theorems 4.3, 5.2].

Birkhoff has shown that an inner product can be defined in a normed linear space of three or more dimensions if orthogonality is symmetric and unique.\(^4\) An equivalent condition is that \(N_+(x; y) = 0 \) whenever \(N_+(y; x) = 0 \), where \(N_+(x; y) = \lim_{h \to 0^+} \frac{\|x + hy\| - \|x\|}{h} \) exists because of the convexity of the function \(f(h) = \|x + hy\| \) [4, Theorem 6.2]. It is possible to show by a purely geometric argument that in a space of three or more dimensions orthogonality must be unique if it is symmetric, but this follows more easily from known facts about projections in normed linear spaces:

Theorem 1. Orthogonality is symmetric in a normed linear space \(T \) of three or more dimensions if and only if an inner product can be defined in \(T \).

Proof. Let \(x_1 \) and \(x_2 \) be any two elements of a three-dimensional subspace \(T_0 \) of \(T \). Then there is an element \(y \in T_0 \) orthogonal to the linear hull \(H_0 \) of \(x_1 \) and \(x_2 \) [4, Theorem 7.1]. If orthogonality is symmetric, then \(H_0 \perp y \). Hence if a projection of \(T_0 \) on \(H_0 \) is defined by \(z = P(z) + ay \), where \(P(z) \in H_0 \), then \(\|P(z)\| \leq \|z\| \) for all \(z \) and \(\|P\| = 1 \). But it is known that an inner product can be defined in a normed

\(^3\) A normed linear space is strictly convex if \(\|x + y\| = \|x\| + \|y\| \) and \(y \neq 0 \) imply \(x = ty \) for some \(t \).

\(^4\) See [2]. With symmetry, uniqueness means the uniqueness for any \(x \) \((\neq 0)\) and \(y \) of the number \(a \) for which \(x \perp ax + y \).
linear space of three or more dimensions if there is a projection of norm one on any given closed linear subspace \[6, \text{Theorem 3}\]. Thus an inner product can be defined in any three-dimensional subspace of \(T\) and hence in \(T\) itself \[5\].

For elements \(x\) and \(y\) of a normed linear space, \(x \perp y\) if and only if there is a nonzero linear functional \(f\) such that \(f(x) = \|f\| \|x\|\) and \(f(y) = 0\), while \(ax + y \perp x\) if and only if \(\|kx + y\|\) is minimum for \(k = a\) \[4, \text{Theorems 2.1, 2.3}\]. Also, the set \(H\) of all \(z\) satisfying \(f(z) = \|f\|\|z\|\) is a supporting hyperplane of the unit sphere at \(x\) if \(f(x) = \|f\|\) and \(\|x\| = 1\), while any supporting hyperplane can be defined by such an equation (see Mazur \[8, \text{p. 71}\]). Also, \(H\) is said to be parallel to an element \(y\) if and only if \(f(y) = 0\) (that is, the line \(\{ky\}\) does not intersect \(H\)).

Interpretations of Theorem 1 by means of linear functionals and hyperplanes therefore give the following necessary and sufficient conditions for the existence of an inner product in a normed linear space of three or more dimensions:

1. For any elements \(x\) and \(y\), the existence of a nonzero linear functional \(f\) with \(f(x) = \|f\| \|x\|\) and \(f(y) = 0\) implies the existence of a nonzero linear functional \(g\) with \(g(y) = \|g\| \|y\|\) and \(g(x) = 0\).

2. For any elements \(x\) and \(y\), \(\|kx + y\|\) is minimum when \(k = -f(y)/f(x)\) if \(f\) is a linear functional with \(f(x) = \|f\| \|x\|\).

3. The existence of a supporting hyperplane of the unit sphere at \(x\) parallel to \(y\) (\(\|x\| = \|y\| = 1\)) implies the existence of a supporting hyperplane at \(y\) parallel to \(x\).

There are infinitely many different normed linear spaces of two dimensions in which orthogonality is not symmetric \[2, \text{Theorem 4}\]. If an isomorphism \(ax + by \leftrightarrow (a, b)\) is set up between the Cartesian plane and a two-dimensional normed linear space containing \(x\) and \(y\) (\(\|x\| = \|y\| = 1\)) and if \(C\) is the “unit pseudo-circle” of all points \((a, b)\) for which \(\|ax + by\| = 1\), then orthogonality is symmetric in \(T\) if and only if the line through the origin parallel to any supporting line of \(C\) at any point \(p\) cuts \(C\) in a point at which there is a supporting line parallel to the line from \(p\) to the origin. Let \(B_r\) \((r \geq 1)\) be the normed linear space of pairs \((x_1, x_2) = x\) of real numbers, where \(\|x\| = \left(|x_1| \cdot |x_2| \right)\) if \(x_1\) and \(x_2\) are of the same sign, and \(\|x\| = \left(|x_1| + |x_2| \right)\) otherwise, where \(s = r/(r - 1)\). It can easily be verified that orthogonality is symmetric in \(B_r\) for \(r \geq 1\), and that it is unique except in the limiting case \(r = 1\). Thus orthogonality can be symmetric and not unique in a two-dimensional space.

Theorem 2. An inner product can be defined in a normed linear space of three or more dimensions if and only if orthogonality is additive on the left.
PROOF. Let T be a normed linear space of three or more dimensions, and x_1 and x_2 be any two elements. Then there are hyperplanes H_1 and H_2 with $x_1 \perp H_1$ and $x_2 \perp H_2$. Let $M = H_1 \cap H_2$. If orthogonality is additive on the left, then $ax_1 + bx_2 \perp M$ for all a and b, and any element z has a unique representation in the form $z = P(z) + y$, where $y \in M$ and $P(z) = ax_1 + bx_2$. Also, $\|z\| \geq \|P(z)\|$ for all z, and $\|P\| = 1$.

Since there is a projection of norm one on any given two-dimensional linear subspace of T, it follows as for Theorem 1 that an inner product can be defined in T [6, Theorem 3].

The conclusion of the above theorem is not valid without the assumption that the space be of more than two dimensions, since it is clear that for a two-dimensional normed linear space orthogonality is additive on the left if and only if for any x ($\neq 0$) there is a unique nonzero element orthogonal to x. It therefore follows that orthogonality is additive on the left in a two-dimensional normed linear space if and only if the space is strictly convex [4, Theorem 4.3].

If L is a closed linear set in a Banach space B, then the normal projection of x on L is said to be the element u for which $x - u \perp L$, or for which $\|x - u\|$ is the distance from x to L. If L is finite-dimensional, or if the unit sphere of B is weakly compact, then normal projection is defined for all x and L [4, Theorem 7.2]. It was shown by Fortet [3, p. 45] that if orthogonality is symmetric in a uniformly convex Banach space, then normal projection is a continuous linear operation and the set H of points y with $y \perp x$ is linear and closed. However, it follows from the above theorems that H is linear for all x only if an inner product can be defined in the space R and that the existence of an inner product follows from symmetry of orthogonality. Also, $x \perp L$ if and only if there is a linear functional f with $f(x) = \|f\| \|x\|$ and $f(L) = 0$ [4, Theorem 2.1]. The following characterizations of inner product spaces of three or more dimensions are therefore direct consequences of Theorem 2.

(4) The existence of a linear functional F with $F(x+y) = \|F\| \|x+y\|$ and $F(z) = 0$ whenever x, y, and z are such that there are linear functionals f and g with $f(x) = \|f\| \|x\|$, $g(y) = \|g\| \|y\|$, and $f(z) = g(z) = 0$.

(5) That normal projection be a linear operation.

If a complete normed linear space has an inner product, then any linear functionals f and g can be written in the form $f(u) = (x, u)$ and $g(u) = (y, u)$, for some elements x and y [7, Theorem 11]. Then F of (4) can be taken as $f+g$. For any linear functional $G = Af + Bg$, there are then numbers a and b such that $G(ax+by) = \|G\| \|ax+by\|$. This condition is also sufficient for an inner product:
Theorem 3. An inner product can be defined in a normed linear space \(T \) of three or more dimensions if and only if it follows from \(f(x) = \|f\| \|x\| \) and \(g(y) = \|g\| \|y\| \) for linear functionals \(f \) and \(g \) and elements \(x \) and \(y \) of \(T \) that there are numbers \(a \) and \(b \) such that \(f(ax+by) + g(ax+by) = \|f+g\| \|ax+by\| \) and \(ax+by \neq 0 \).

Proof. First note that if for some \(x \) there are two nonzero linear functionals \(F \) and \(G \) with \(F(x) = \|F\| \|x\| \) and \(G(x) = \|G\| \|x\| \), then the assumption of the theorem would imply that \(h(x) = \|h\| \|x\| \) if \(h = \|G\| F - \|F\| G \). But this is clearly impossible unless \(h \equiv 0 \), or \(\|G\| F = \|F\| G \). Thus two independent linear functionals cannot take on their maximum in the unit sphere \(\|x\| \leq 1 \) at the same point, which is known to imply that the unit sphere has a tangent hyperplane at each point [4, Theorem 5.1]. Now suppose that \(x \perp z \) and \(y \perp z \), and let \(T_0 \) be the linear hull of \(x, y, \) and \(z \). There are then two linear functionals \(f \) and \(g \) with \(f(x) = \|f\| \|x\| \), \(g(y) = \|g\| \|y\| \), and \(f(z) = g(z) = 0 \) [4, Theorem 2.1]. If \(x \) and \(y \) are not linearly independent, then \(x+\lambda z \). Let \(x \) and \(y \) be linearly independent and suppose that for \(u = x+y \) there are no numbers \(A \) and \(B \) satisfying \(Af(u) +Bg(u) \) \(= \|Af+Bg\| \|u\| \) and in \(C \) for which there are linear functionals \(f' = Af + Bg \) and \(g' = Af + Bg \) with \(f'(x') = \|f'\| \|x'\| \) and \(g'(y') = \|g'\| \|y'\| \), but such that none of the linear functionals \(Af' +Bg' \) satisfy \(Af'[x' + (1-r)y'] +Bg'[x' + (1-r)y'] = \|Af' +Bg'\| \|x' + (1-r)y'\| \) for any \(r \) with \(0 < r < 1 \). For each such \(r \), there is a number \(\alpha_r \) for which \([x' + (1-r)y'] + \alpha_r z] / \|x' + (1-r)y' + \alpha_r z\| = v \perp z \) [4, Theorem 2.3]. If \(h \) is a linear functional defined in \(T_0 \) for which \(h(v) = \|h\| \|v\| \) and \(h(z) = 0 \), and if \(A_r \) and \(B_r \) are such that \(Af'(s_0) +Bg'(s_0) = 0 \) for some \(s_0 \in T_0 \) for which \(h = 0 \) but not both \(f' \) and \(g' \) are zero, then \(h \) and \(Af' +Bg' \) are both zero at \(s_0 \) and \(z \) and hence are multiples of each other on \(T_0 \). Then if \(a_r \) and \(b_r \) are chosen by the assumptions of the theorem so that \(\|a_r x' + b_r y'\| = 1 \) and \(\|Af'(a_r x' + b_r y') +Bg'(a_r x' + b_r y')\| = \|Af' +Bg'\| \), it follows that \(h \) is a multiple of \(Af' +Bg' \) and that \(h(a_r x' + b_r y') = \|h\| \|a_r x' + b_r y'\| \). Thus the unit sphere \(S \) contains the straight lines \(l_r \) between \(a_r x' + b_r y' \) and \(v \), since the unit sphere is convex and the tangent hyperplane defined by \(h(x) = \|h\| \) contains \(a_r x' + b_r y' \) and \(v \). This tangent hyperplane at \(v \) then contains this line, but does not contain a point of \(C \) between \(x' \) and \(y' \). But there are also tangent hyperplanes at \(x' \) and \(y' \) parallel to \(z \), while \(a_r x' + b_r y' \) is by assumption not of the form \([x' + (1-r)y'] / \|x' + (1-r)y'\| \) for any \(r \) satisfying \(0 < r < 1 \). This implies that the tan-
tangent hyperplane at \(v \) contains either \(x' \) or \(y' \) and is coincident with the tangent hyperplane at \(x' \) or \(y' \), respectively. Letting \(r \) vary from 0 to 1, it now follows from the convexity of \(S \) that the tangent hyperplanes at \(x' \) and at \(y' \) have a common point of contact and must therefore coincide, since \(S \) has a tangent hyperplane at each point. This tangent hyperplane then contains the line from \(x' \) to \(y' \), and \(f'(x+y) = \| f' \| \| x+y \| \), contrary to assumption. Hence there are numbers \(A \) and \(B \) with \(Af(x+y) +Bg(x+y) = \| Af+Bg \| \| x+y \| \). Since \(Af(z) +Bg(z) = 0 \), this implies that \(x+y \perp z \) and that orthogonality is additive on the left. It now follows from Theorem 2 that an inner product can be defined in \(T \).

For any element \(x \) of a normed linear space there is always a hyperplane \(H \) through the origin with \(x \perp H \). However, for no hyperplane \(H \) of the space of continuous functions is there an element \(f \in C \) with \(H \perp f \). This follows from the fact that \(g \perp f \) if and only if \(\min_A gf \leq 0 \leq \max_A gf \), where \(A \) is the set of all \(t \) with \(|g(t)| = \| g \| \) [4, §4]. If \(T \) is one of the spaces \((s), (m), (c) \), or \(l(p) (p \geq 1) \), then clearly \(H \perp x \) for an infinite number of different hyperplanes \(H \) and elements \(x \). If a normed linear space is strictly convex, then for no element \(x \) is there more than one hyperplane \(H \) with \(H \perp x \), while no hyperplane is orthogonal to more than one element if the norm of \(T \) is differentiable [4, Theorems 4.2, 4.3]. This difference is the reason for the lack of similarity between the proofs of the following theorems.

Theorem 4. An inner product can be defined in a normed linear space of three or more dimensions if and only if each hyperplane through the origin is orthogonal to at least one element.

Proof. Let \(x_1 \) and \(x_2 \) be any two elements of a normed linear space \(T \) of three or more dimensions, and let \(P_0 \) be the linear hull of \(x_1 \) and \(x_2 \). By well-ordering the set of all linear subspaces \(M \) of \(T \) for which \(P_0 \perp M \), it follows that there is a linear subspace \(\overline{M} \) of \(T \) such that \(P_0 \perp \overline{M} \) and \(\overline{M} \) is not contained properly in any other such linear subspace. Then it is clear that \(\overline{M} \) is closed. Hence if the linear hull \(H \) of \(P_0 \) and \(\overline{M} \) were not \(T \), there would be a hyperplane through the origin which contains \(P_0 \) and \(\overline{M} \). If every hyperplane through the origin is orthogonal to some element, then there would be an element \(x \) such that \(H \perp x \). But if \(y = x_p + x_m + kx \), where \(x_p \in P_0 \) and \(x_m \in \overline{M} \), then \(\| y \| \geq \| x_p + x_m \| \geq \| x_p \| \), since \((x_p + x_m) \perp x \) and \(x_p \perp x_m \). Thus \(P_0 \) would be orthogonal to the linear hull of \(\overline{M} \) and \(x \). Hence the linear hull of \(P_0 \) and \(\overline{M} \) must be \(T \). A projection \(P(z) \) of \(T \) on \(P_0 \) can now be defined by \(z = P(z)+z_m \), where \(P(z) \in P_0 \) and \(z_m \in \overline{M} \). Since \(\| P \| = 1 \),
it follows that there is a projection of unit norm on any given two-dimensional linear subspace of T and hence (as in the proof of Theorem 1) that an inner product can be defined in T.

Theorem 5. An inner product can be defined in a normed linear space T of three or more dimensions if and only if for any $x \in T$ there is a hyperplane H through the origin with $H \perp x$.

Proof. Suppose x, y, and z are any three elements of T with $x \perp z$ and $y \perp z$. If T is strictly convex, then for any u and v of T there is a unique a such that $au + v \perp u$ [4, Theorem 4.3]. Hence if H is a hyperplane through the origin with $H \perp z$, and if T is strictly convex, then $x + y \in H$ and $x + y \perp z$, orthogonality is additive on the left, and an inner product can be defined in T. Now suppose T is not strictly convex. Then there are elements x and y and a linear functional f with $f(x) = f(y) = \|f\|$ and $\|x\| = \|y\| = 1$ [9, Theorem 6]. Let z be any other element of unit norm not in the linear set generated by x and y and let S_0 be the unit sphere of the space T_0 generated by x, y, and z. Let P_0 be the set of all points $u \in S_0$ for which $\|u\| = 1$ and $f(u) = \|f\|$. Then P_0 contains the line from x to y, and is itself either a straight line segment or a section of a plane.

Let L_0 be the hyperplane of T_0 with $P_0 \perp L_0$, where L_0 contains all points at which f is zero. Then for any v and each number a there is a hyperplane H_a of T_0 with $H_a \perp v + ax$. As $a \to 0$ (or as $a \to -0$), the planes H_a will have at least one limit H_+ (or H_-) in the sense that there exist sequences $\{a_i\}$ and $\{b_i\}$, with $a_i \to +0$ and $b_i \to -0$, $\lim_{a_i \to 0} \rho(w, H_{a_i}) = 0$ and $\lim_{b_i \to 0} \rho(w, H_{b_i}) = 0$, if w is any fixed element of H_+ or H_-, respectively. Since at each point of unit norm in H_a there is a supporting plane of S_0 parallel to $v + ax$, it follows that if $v \in L_0$ then neither H_+ nor H_- crosses P_0, and P_0 consists of those and only those points of the surface of S_0 in a region containing x and bounded by H_+, H_-, and the two supporting lines of P_0 parallel to v. But this is possible for arbitrary $v \in L_0$ only if P_0 is a point.

Theorems 3–5 can be given direct interpretations by means of supporting hyperplanes of the unit sphere S, as was done for Theorem 1 to get (3). The first of these interpretations can be changed somewhat to give the following nontrivial consequence of Theorem 3.

Theorem 6. An inner product can be defined in a Banach space if every supporting hyperplane of the unit sphere S has a point of contact and the existence of supporting hyperplanes H_1 and H_2 at points x and y of S imply that any supporting hyperplane H_3 of S satisfying $H_1 \cap H_2 \cap H_3 = 0$ have a point of contact which is in the linear hull of x and y.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
PROOF. First suppose that there is an element \(x \) and nonzero linear functionals \(f_1 \) and \(f_2 \) such that \(\|x\| = 1 \), \(f_1(x) = \|f_1\| \), and \(f_2(x) = \|f_2\| \). Then \(x \) is in both of the supporting hyperplanes \(H_1 \) and \(H_2 \) of \(S \), where \(H_1 \) and \(H_2 \) are defined by \(f_1(z) = \|f_1\| \) and \(f_2(z) = \|f_2\| \). If \(L \) is the set of points at which \(f_1 = f_2 = 0 \), then \(H_1 \cap H_2 = x + L \). If \(f_1 \) and \(f_2 \) are linearly independent, then the linear hull of \(x \) and \(L \) is not the whole space and there is a nonzero linear functional \(f_3 \) which is zero on \(x \) and \(L \). Let \(H_3 \) be defined by \(z \in H_3 \) if and only if \(f_3(z) = \|f_3\| \). Then clearly \(H_1 \cap H_2 \cap H_3 = 0 \). But the second hypothesis of the theorem would imply that \(x \in H_3 \), or \(f_3(x) = \|f_3\| \), which contradicts \(f_3(x) = 0 \). Therefore \(f_1 \) and \(f_2 \) are linearly dependent.

Now suppose that \(\|x\| = \|y\| = 1 \), \(f_1(x) = \|f_1\| \), and \(f_2(y) = \|f_2\| \). If \(f_3 = f_1 + f_2 \), and \(H_1 \), \(H_2 \), \(H_3 \) are defined by \(f_i(z) = \|f_i\| \) \((i = 1, 2, 3)\), then \(x \in H_1 \) and \(y \in H_2 \). If \(H_1 \cap H_2 \cap H_3 \neq 0 \), then there exists an element \(w \) such that \(f_1(w) = \|f_1\| \), \(f_2(w) = \|f_2\| \), and \(f_1(w) + f_2(w) = \|f_1 + f_2\| \). Thus \(\|f_1 + f_2\| = \|f_1\| + \|f_2\| \). Since every linear functional in \(T \) takes on its maximum in the unit sphere, \(H_3 \) contains a point \(z \) of norm 1. Then \(f_1(z) + f_2(z) = \|f_1 + f_2\| = \|f_1\| + \|f_2\| \). Therefore \(f_1(z) = \|f_1\| \) and \(f_2(z) = \|f_2\| \). Hence \(f_1 \) and \(f_2 \) must be linearly dependent, and \(f_1(z) + f_2(z) = \|f_1 + f_2\| \). If \(H_1 \cap H_2 \cap H_3 = 0 \), then \(H_2 \) has a point of contact \(ax + by \) \((\|ax + by\| = 1) \) and \(f_3(ax + by) = \|f_3\| \|ax + by\| \). Thus it follows from Theorem 3 that an inner product can be defined.

REFERENCES

Harvard University