CONCERNING AUTOMORPHISMS OF NON-ASSOCIATIVE ALGEBRAS

R. D. SCHAFFER

In their studies of non-associative algebras A. A. Albert and N. Jacobson have made much use of the relationships which exist between an arbitrary non-associative algebra \(A \) and its associative transformation algebra \(T(\mathbb{A}) \). In this paper we are interested in the automorphism group \(\mathcal{G} \) of \(A \), and we sharpen the results of Jacobson [3, §4] and Albert [2, §9] in the sense that we prove \(\mathcal{G} \) isomorphic to a well-defined subgroup of the automorphism group of each of three associative algebras (§§2, 3).

Incidental to our proofs is the reconstruction (in the sense of equivalence) of an arbitrary non-associative algebra \(A \) with unity element 1 from \(T(\mathbb{A}) \) and from either of the enveloping algebras \(E(R(\mathbb{A})) \), \(E(L(\mathbb{A})) \) of respectively the right or left multiplications of \(A \). This paper has been expanded in accordance with suggestions of the referee to include a more detailed study of the right ideals used in this reconstruction process (§5).

1. Preliminaries. Our notations are chiefly those of Albert as given in [1]. We regard a non-associative algebra \(A \) of order \(n \) over a field \(\mathbb{F} \) as consisting of a linear space \(\mathcal{L} \) of order \(n \) over \(\mathbb{F} \), a linear space \(R(\mathbb{A}) \) of linear transformations \(R_\cdot \) on \(\mathcal{L} \) of order \(m \leq n \) over \(\mathbb{F} \), and a linear mapping of \(\mathcal{L} \) on \(R(\mathbb{A}) \),

\[
(1) \quad x \rightarrow R_\cdot.
\]

The elements \(R_\cdot \) of \(R(\mathbb{A}) \) are called right multiplications, and \(R(\mathbb{A}) \) the right multiplication space of \(A \). Multiplication in \(A \) is defined by

\[
(2) \quad a \cdot x = aR_\cdot.
\]

The linearity of the right multiplications and of (1) insures distributivity in \(A \) as well as the usual laws of scalar multiplication. We shall use the fact that, in case \(\mathbb{A} \) contains no absolute right divisor of zero (an element \(x \) such that \(a \cdot x = 0 \) for all \(a \) in \(A \)), the mapping (1) is nonsingular and the order of \(R(\mathbb{A}) \) over \(\mathbb{F} \) is \(n \).

The linear transformations \(L_a \) defined by

\[
(3) \quad a \rightarrow x \cdot a = aL_\cdot
\]
are called left multiplications of \(\mathfrak{A} \) and form the left multiplication space \(L(\mathfrak{A}) \) of \(\mathfrak{A} \). The algebra \(\mathfrak{A} \) may equally well be regarded as consisting of \(\mathfrak{g} \), \(L(\mathfrak{A}) \), and the linear mapping

\[
(4) \quad x \rightarrow L_x
\]

of \(\mathfrak{g} \) on \(L(\mathfrak{A}) \). Both \(R(\mathfrak{A}) \) and \(L(\mathfrak{A}) \) are linear subspaces of the total matric algebra \((\mathfrak{g})_n \) of all linear transformations on \(\mathfrak{g} \).

If \(\mathfrak{M} \) is a subset of \((\mathfrak{g})_n \), the algebra of all polynomials in the transformations in \(\mathfrak{M} \) with coefficients in \(\mathfrak{g} \) is called the enveloping algebra of \(\mathfrak{M} \), and is denoted by \(E(\mathfrak{M}) \). We are particularly concerned with the enveloping algebras \(E(R(\mathfrak{A})) \) and \(E(L(\mathfrak{A})) \) of respectively the right and left multiplications of \(\mathfrak{A} \), and with the transformation algebra \(T(\mathfrak{A}) = E(I, R(\mathfrak{A}), L(\mathfrak{A})) \) which is the algebra of all polynomials with coefficients in \(\mathfrak{g} \) in the right and left multiplications of \(\mathfrak{A} \) and the identity transformation \(I \) in \((\mathfrak{g})_n \). We shall have occasion to write an arbitrary element \(T \) of each of these algebras as follows:

\[
(5) \quad T = f(R_x, R_y, \ldots) \quad \text{for } T \text{ in } E(R(\mathfrak{A})),
\]

\[
(6) \quad T = f(L_z, L_y, \ldots) \quad \text{for } T \text{ in } E(L(\mathfrak{A})),
\]

\[
(7) \quad T = f(I, R_x, L_z, R_y, \ldots) \quad \text{for } T \text{ in } T(\mathfrak{A}),
\]

where \(x, y, \ldots \) are elements of \(\mathfrak{A} \). In case \(\mathfrak{A} \) contains a unity element \(1 \), then \(R(\mathfrak{A}) \) contains \(I \), and we may write

\[
(8) \quad T = f(R_x, L_z, R_y, \ldots) \quad \text{for } T \text{ in } T(\mathfrak{A}),
\]

\(x, y, \ldots \) in \(\mathfrak{A} \).

If \(\mathfrak{B} \) is a linear subspace of \(\mathfrak{A} \), the set of all \(R_b \) for \(b \) in \(\mathfrak{B} \) is a linear subspace \(R(\mathfrak{B}, \mathfrak{A}) \) of \(R(\mathfrak{A}) \), and the set of all \(L_b \) is a linear subspace \(L(\mathfrak{B}, \mathfrak{A}) \) of \(L(\mathfrak{A}) \).

An automorphism \(S \) of an algebra \(\mathfrak{A} \) is a nonsingular linear transformation \(x \rightarrow xS \) of \(\mathfrak{A} \) on itself such that

\[
(9) \quad (a \cdot x)S = aS \cdot xS
\]

for all \(a, x \) in \(\mathfrak{A} \). In terms of right and left multiplications, (9) may be written equivalently as

\[
(10) \quad R_xS = SR_xS
\]

or

\[
(11) \quad L_xS = SL_xS
\]

for all \(x \) in \(\mathfrak{A} \). We shall use the facts that, if \(S \) is an automorphism of \(\mathfrak{A} \), then \(S^{-1} \) is also, and if \(\mathfrak{A} \) has a unity element \(1 \), then \(1S = 1 \).
Inasmuch as the elements T of subalgebras of $(\mathfrak{A})_n$ are themselves linear transformations, we shall denote linear transformations on subalgebras of $(\mathfrak{A})_n$—such as $T(\mathfrak{A})$, $E(R(\mathfrak{A}))$, $E(L(\mathfrak{A}))$—by Greek capitals, so that if Σ is a linear transformation on $T(\mathfrak{A})$, say, we may write (without confusion) the image of T under Σ as $T\Sigma$.

An automorphism S of \mathfrak{A} determines an automorphism Σ of $T(\mathfrak{A})$ as follows: let T in $T(\mathfrak{A})$ be written in the form (7); then Σ is the mapping

$$ T \rightarrow T \Sigma = f(I, R_x, L_x, R_y, \cdots) = S^{-1}TS. $$

For if S is an automorphism of \mathfrak{A}, then $R_x = SR_xS^{-1}$, $L_x = SL_xS^{-1}$ by (10), (11), and $T = f(I, R_x, L_x, R_y, \cdots) = f(I, SR_xS^{-1}, SL_xS^{-1}, SR_yS^{-1}, \ldots) = Sf(I, R_x, L_x, R_y, \cdots)S^{-1} = S(T\Sigma)S^{-1}$, or $T\Sigma = S^{-1}TS$. The mapping (12) is obviously an automorphism of $T(\mathfrak{A})$.

Moreover, Σ induces automorphisms (which we do not distinguish notationally from Σ) on the subalgebras $E(R(\mathfrak{A}))$, $E(L(\mathfrak{A}))$ of $T(\mathfrak{A})$:

(13) $T \rightarrow T \Sigma = f(R_x, R_y, \cdots)$, T in $E(R(\mathfrak{A}))$ as in (5),

(14) $T \rightarrow T \Sigma = f(L_x, L_y, \cdots)$, T in $E(L(\mathfrak{A}))$ as in (6).

If S determines Σ as in (12), then

$$ R(\mathfrak{A}) \Sigma = R(\mathfrak{A}), \quad L(\mathfrak{A}) \Sigma = L(\mathfrak{A}), $$

since $R_x \Sigma = R_x$ in $R(\mathfrak{A})$ while $L_x \Sigma = L_x$ in $L(\mathfrak{A})$, and the nonsingularity of Σ eliminates the possibility of proper inclusion.

2. Automorphisms of an algebra with unity element. Let \mathfrak{A} be a non-associative algebra of order n over \mathfrak{F} with unity element 1. We consider the elements of \mathfrak{A} as comprising a linear space \mathfrak{F} of order n over \mathfrak{F}. Let \mathfrak{B} be any (associative) algebra of linear transformations on \mathfrak{F} which contains either $R(\mathfrak{A})$ or $L(\mathfrak{A})$. We intend to reconstruct \mathfrak{A} (in the sense of equivalence) as an algebra of residue classes of \mathfrak{B}.

Denote by \mathfrak{N} the set of all transformations N in \mathfrak{B} which annihilate 1, that is, for which $1N = 0$. Then \mathfrak{N} is a right ideal of \mathfrak{B}. For if N, N_1 are in \mathfrak{N}, then $1(\alpha N + \beta N_1) = \alpha 1N + \beta 1N_1 = 0$ for α, β in \mathfrak{F}, while $1NT = 0T = 0$ for any transformation T in \mathfrak{B}. Denote by \mathfrak{D} whichever set $R(\mathfrak{A})$ or $L(\mathfrak{A})$ is assumed to be contained in \mathfrak{B}, and by D_x correspondingly the transformation R_x or L_x. Then \mathfrak{B} is the supplementary sum $\mathfrak{B} = \mathfrak{D} + \mathfrak{N}$. For T in \mathfrak{B} may be written uniquely in the form $T = D_t + N$, $1T = t$, N in \mathfrak{N}.

Since $1TN = tN$ which is not necessarily zero, \mathfrak{N} is not in general a two-sided ideal of \mathfrak{B} and we are not able to form the difference algebra $\mathfrak{B} - \mathfrak{N}$ when we take residue classes $[T]$ modulo \mathfrak{N}. Instead we form
the difference group $\mathfrak{B} - \mathfrak{N}$ of residue classes $[T]$ modulo \mathfrak{N} and have as usual a linear set over \mathfrak{F} with respect to the operations $[T] + [U] = [T + U]$, $\lambda [T] = [\lambda T]$ of addition and scalar multiplication. Define multiplication in this linear set as follows:

\[(16)\quad [T][U] = [X] \quad \text{where} \quad 1X = 1T \cdot U,\]

where the multiplication on the right is that in \mathfrak{A}. To see that for any T, U in \mathfrak{B} such an X exists, we need only to note that, if $X = D_x$ for $x = 1T \cdot 1U$ in \mathfrak{A}, then $1X = 1T \cdot 1U$. This definition of multiplication is independent of the representatives T, U since if $[T] = [T_1]$, $[U] = [U_1]$, then there exist N, N_1 in \mathfrak{N} such that $T_1 = T + N$, $U_1 = U + N_1$, and $1T_1 \cdot 1U_1 = 1T \cdot 1U$. With this multiplication the distributive laws hold in $\mathfrak{B} - 91$. Hence $\mathfrak{B} - 91$ is a non-associative algebra over \mathfrak{F}. Since there are no difference algebras used in this paper, there should be no confusion in the use of the notation $\mathfrak{B} - 91$ for this algebra with multiplication defined by (16).

Theorem 1. Let \mathfrak{A} be a non-associative algebra over \mathfrak{F} with unity element 1, and \mathfrak{B} be any (associative) algebra of linear transformations on \mathfrak{A} containing either $\mathfrak{R}(\mathfrak{A})$ or $\mathfrak{L}(\mathfrak{A})$. If \mathfrak{N} is the right ideal of transformations in \mathfrak{B} annihilating 1, then the non-associative algebra $\mathfrak{B} - 91$ with multiplication defined by (16) is equivalent to \mathfrak{A}.

For each residue class $[T]$ there is a unique transformation D_x in \mathfrak{B} ($= \mathfrak{R}(\mathfrak{A})$ or $\mathfrak{L}(\mathfrak{A})$) such that $1T = 1D_x = t$. Then, since \mathfrak{A} contains neither absolute right nor absolute left divisors of zero, the (obviously linear) mapping

\[(17)\quad x \rightarrow D_x \rightarrow [D_x]\]

is one-to-one on \mathfrak{A} to $\mathfrak{B} - 91$. But

\[(18)\quad [D_x][D_y] = [D_{xy}], \quad x, y \in \mathfrak{A},\]

since $xy = 1D_x \cdot 1D_y = 1D_{xy}$. Then (17) is an equivalence of \mathfrak{A} and $\mathfrak{B} - 91$ since $xy = D_{xy} \rightarrow [D_{xy}] = [D_x][D_y]$ under (17).

Now $\mathfrak{T}(\mathfrak{A})$, $\mathfrak{E}(\mathfrak{A})$, $\mathfrak{B}(\mathfrak{A})$ are among the algebras of linear transformations on the vector space \mathfrak{F} underlying \mathfrak{A} which contain either $\mathfrak{R}(\mathfrak{A})$ or $\mathfrak{L}(\mathfrak{A})$—or both, as in the case of $\mathfrak{T}(\mathfrak{A})$—and may be used as the algebra \mathfrak{B} in Theorem 1. We denote by \mathfrak{N}_T the set of all N in $\mathfrak{T}(\mathfrak{A})$ annihilating 1 and write $\mathfrak{N}_T = \mathfrak{N}_T \cap \mathfrak{E}(\mathfrak{A})$, $\mathfrak{N}_L = \mathfrak{N}_T \cap \mathfrak{E}(\mathfrak{A})$. Then Theorem 1 implies that if multiplication in the respective algebras of residue classes is defined by (16) we have $\mathfrak{A} \cong \mathfrak{T}(\mathfrak{A}) - \mathfrak{N}_T \cong \mathfrak{E}(\mathfrak{A}) - \mathfrak{N}_T \cong \mathfrak{E}(\mathfrak{A}) - \mathfrak{N}_L$.

In the proof of the next theorem we must distinguish between the
cases $\mathfrak{D} = R(\mathfrak{A})$ and $\mathfrak{D} = L(\mathfrak{A})$, and we use the following equations:

(19) \[[R_x][R_y] = [R_{xy}], \quad x, y \in \mathfrak{A}, \]

(20) \[[L_x][L_y] = [L_{xy}], \quad x, y \in \mathfrak{A}, \]

verification of which is similar to that of (18).

Theorem 2. Let \mathfrak{A}, \mathfrak{B}, and \mathfrak{S} be as in Theorem 1, and \mathfrak{D} be $R(\mathfrak{A})$ or $L(\mathfrak{A})$, whichever is assumed to be in \mathfrak{B}. If Σ is an automorphism of \mathfrak{B} such that $\mathfrak{B} \Sigma = \mathfrak{S}$ and $\mathfrak{D} \Sigma = \mathfrak{D}$, then Σ determines an automorphism $S_\mathfrak{D}$ of \mathfrak{A} as follows:

(21) \[S_\mathfrak{D}: \ x \to [D_x] \to [D_x \Sigma] = [D_x'] \to x' = x S_\mathfrak{D}, \]

for x, x' in \mathfrak{A}, where the $[D_x]$ are elements of $\mathfrak{B} - \mathfrak{S} \cong \mathfrak{A}$.

Note first that the mapping

(22) \[[T] \to [T \Sigma] \]

of $\mathfrak{B} - \mathfrak{S}$ on itself is well-defined, since if $[T] = [T_1]$ then $T = T_1 + N$ for N in \mathfrak{S}, and $T \Sigma = (T_1 + N) \Sigma = T_1 \Sigma + N \Sigma = T_1 + N_1$ with N_1 in \mathfrak{S} since $\mathfrak{S} \Sigma = \mathfrak{S}$. Hence $[T \Sigma] = [T_1 \Sigma]$. Inasmuch as the correspondences $x \to [D_x]$ and $[D_x'] \to x'$ are equivalences between \mathfrak{A} and $\mathfrak{B} - \mathfrak{S}$, we need only to show that (22) is an automorphism of $\mathfrak{B} - \mathfrak{S}$ in order to show that (21) is an automorphism of \mathfrak{A}. Now (22) is linear since $\alpha[T] + \beta[U] = [\alpha T + \beta U] \to [(\alpha T + \beta U) \Sigma] = [\alpha T \Sigma + \beta U \Sigma] = \alpha[T \Sigma] + \beta[U \Sigma]$, and is nonsingular since $[T] \to [T \Sigma] = [0]$ implies $T \Sigma = N$ in \mathfrak{S}, $T = N \Sigma^{-1} = N_1$ in \mathfrak{S}, $[T] = [0]$. Since $\mathfrak{D} \Sigma = \mathfrak{D}$, there exists an element x_1 of \mathfrak{A} such that $D_{x_1} \Sigma = D_{x_1}$. But then $x_1 = x'$ since there is a unique transformation in \mathfrak{S} in each residue class of \mathfrak{B} modulo \mathfrak{S}. We may write $x' = x S_\mathfrak{D}$ and

(23) \[D_x \Sigma = D_x s_{x_1}. \]

We distinguish now between the cases $\mathfrak{D} = R(\mathfrak{A})$ and $\mathfrak{D} = L(\mathfrak{A})$. Let $\mathfrak{D} = R(\mathfrak{A})$ so that (19) holds. Then, since Σ is an automorphism of \mathfrak{B}, we have $[R_x][R_y] = [R_{xy}] \to [(R_x)(R_y) \Sigma] = [(R_x \Sigma)(R_y \Sigma)] = [R_{xy} s_{x_1} s_{y_1}]$ under (22) which is an automorphism of $\mathfrak{B} - \mathfrak{S}$ as desired. In case $\mathfrak{D} = L(\mathfrak{A})$ it follows from (20) that $[L_x][L_y] = [L_y L_x] \to [(L_y L_x) \Sigma] = [(L_y \Sigma)(L_x \Sigma)] = [L_y s_{x_1} L_x s_{y_1}]$ under (22), completing the proof of the theorem.

We shall have occasion in the proof of the next theorem to use the fact that if \mathfrak{B} contains both $R(\mathfrak{A})$ and $L(\mathfrak{A})$, and if both $R(\mathfrak{A})$ and $L(\mathfrak{A})$—as well of course as \mathfrak{S}—are their own images under an automorphism Σ of \mathfrak{B}, then
(24) \[R_x \Sigma = R_x s_x, \quad L_x \Sigma = L_x s_x \]
for \(S_x \) defined by (21).

Theorem 3. Let \(\mathfrak{A} \) be a non-associative algebra with unity element 1 and automorphism group \(\mathfrak{S} \). Let \(\mathfrak{S}_T \) be the group of automorphisms \(\Sigma \) of \(T(\mathfrak{A}) \) such that \(R_T \Sigma = R_T, \ R(\mathfrak{A}) \Sigma = R(\mathfrak{A}), \ L(\mathfrak{A}) \Sigma = L(\mathfrak{A}) \). Then the correspondence \(S \rightarrow \Sigma \) of (12) is an isomorphism of \(\mathfrak{S} \) onto \(\mathfrak{S}_T \).

If \(S \) is in \(\mathfrak{S} \) and \(S \rightarrow \Sigma \) under (12), then \(1(NS) = 1S^{-1}NS = 1NS = 0S = 0 \) for \(N \) in \(R_T \). The nonsingularity of \(\Sigma \) gives \(R_T \Sigma = R_T \). By (15) we have \(\Sigma \) in \(\mathfrak{S}_T \). By Theorem 2 this \(\Sigma \) determines an automorphism \(S_2 \) of \(\mathfrak{A} \):

\[S_2 : \quad x \rightarrow [R_x] \rightarrow [R_x \Sigma] = [R_x s_x] \rightarrow xS = xS_2 \]
for all \(x \) in \(\mathfrak{A} \), or \(S = S_2 \). Conversely, let \(\Sigma \) be in \(\mathfrak{S}_T \). Then \(\Sigma \) determines an automorphism \(S_2 \) of \(\mathfrak{A} \) which in turn determines an automorphism

(25) \[\Sigma_2 : \quad T \rightarrow T \Sigma_2 = S_2^{-1}TS_2, \quad T \in T(\mathfrak{A}), \]
of \(T(\mathfrak{A}) \) by (12). Write \(T \) in the form (8). Then \(T \Sigma_2 = f(R_x s_x, L_x s_x, R_y s_y, \ldots) = f(R_x \Sigma, L_x \Sigma, R_y \Sigma, \ldots) = \{f(R_x, L_x, R_y, \ldots)\} \Sigma = T \Sigma \)
by (12), (24), and the fact that \(\Sigma \) is an automorphism of \(T(\mathfrak{A}) \). That is, \(\Sigma_2 = \Sigma \). It is clear then that \(S \rightarrow \Sigma \) is a one-to-one mapping of \(\mathfrak{S} \) onto \(\mathfrak{S}_T \). To see that \(S \rightarrow \Sigma \) is an isomorphism we note only that if \(S_1, S_2 \) are in \(\mathfrak{S} \), \(S_1 \rightarrow \Sigma_1, S_2 \rightarrow \Sigma_2 \), then for \(T \) in \(T(\mathfrak{A}) \) we have \(T \Sigma_1 = S_1^{-1}TS_1, T \Sigma_2 = S_2^{-1}S_2^{-1}TS_2 = (S_1S_2)^{-1}T(S_1S_2) \), or \(S_1S_2 \rightarrow \Sigma_1 \Sigma_2 \).

Variations in the proof of the following theorem from the proof above are trivial, consisting only of changes due to the fact that elements of \(E(R(\mathfrak{A})) \) or \(E(L(\mathfrak{A})) \) are generated by right or left multiplications alone.

Theorem 4. The correspondences \(S \rightarrow \Sigma \) of (13) and (14) are isomorphisms of \(\mathfrak{S} \) onto \(\mathfrak{S}_R \) and \(\mathfrak{S}_L \) respectively, where \(\mathfrak{S}_R \) is the group of automorphisms \(\Sigma \) of \(E(R(\mathfrak{A})) \) such that \(R_R \Sigma = R_R, R(\mathfrak{A}) \Sigma = R(\mathfrak{A}) \), and \(\mathfrak{S}_L \) is the group of automorphisms \(\Sigma \) of \(E(L(\mathfrak{A})) \) such that \(R_L \Sigma = R_L, L(\mathfrak{A}) \Sigma = L(\mathfrak{A}) \).

3. **Automorphisms of an algebra without unity element.** In case we are concerned with an algebra \(\mathfrak{A}_0 \) of order \(n - 1 \) over \(\mathfrak{F} \) without a unity element, we can easily modify the results of §2 to include \(\mathfrak{A}_0 \).

For we adjoin a unity element 1 to \(\mathfrak{A}_0 \) in the usual fashion to obtain an algebra \(\mathfrak{A} \) of order \(n \) over \(\mathfrak{F} \) containing \(\mathfrak{A}_0 \) (in the sense of equivalence) as an ideal. Every element \(x \) of \(\mathfrak{A} \) may be written uniquely in the form
\[(26) \quad x = \xi 1 + x_0, \quad \xi \text{ in } \mathfrak{g}, \quad x_0 \text{ in } \mathfrak{u}_0,\]

and if \(y = \eta 1 + y_0\), then \(x + y = (\xi + \eta) 1 + (x_0 + y_0)\), \(\delta x = (\delta \xi) 1 + (\delta x_0)\) for \(\delta\) in \(\mathfrak{g}\), \(xy = (\xi \eta) 1 + (\eta x_0 + \xi y_0 + x_0 y_0)\). We shall write \(\mathfrak{u} = \mathfrak{g} + \mathfrak{u}_0\) for the algebra so defined. Any automorphism \(S_0\) of \(\mathfrak{u}_0\) may be extended in a unique fashion to an automorphism \(S\) of \(\mathfrak{u}\) by defining
\[(27) \quad S: \quad x \to xS = \xi 1 + x_0 S_0,\]

\(x\) as in \((26)\). Note that \(S\) induces the automorphism \(S_0\) within \(\mathfrak{u}_0\).

It is apparent that an automorphism \(S_0\) of \(\mathfrak{u}_0\) determines a unique automorphism \(\Sigma\) of \(T(\mathfrak{u})\) as follows: \(S_0 \to S\) by \((27)\), \(S \to \Sigma\) by \((12)\). Moreover, the linear subspaces \(R(\mathfrak{u}_0, \mathfrak{u})\) and \(L(\mathfrak{u}_0, \mathfrak{u})\) of \(T(\mathfrak{u})\) are their own images under \(\Sigma\). For if \(x_0\) is in \(\mathfrak{u}_0\), then \(R_{x_0} \Sigma = R_{x_0} S = R_{x_0} S_0\) is in \(R(\mathfrak{u}_0, \mathfrak{u})\) and \(L_{x_0} \Sigma = L_{x_0} S = L_{x_0} S_0\) is in \(L(\mathfrak{u}_0, \mathfrak{u})\).

If \(\mathfrak{B} - \mathfrak{R}\) is the non-associative algebra equivalent to \(\mathfrak{u}\) which was defined in \(\S 2\), then \(\mathfrak{u}_0\) is equivalent to the ideal \(\mathfrak{g}_0\) of \(\mathfrak{B} - \mathfrak{R}\) consisting of residue classes \([D_{x_0}]\) for \(x_0\) in \(\mathfrak{u}_0\), that is, for \(D_{x_0}\) in \(\mathfrak{D}_0 = R(\mathfrak{u}_0, \mathfrak{u})\) or \(L(\mathfrak{u}_0, \mathfrak{u})\) according as \(\Sigma = R(\mathfrak{u})\) or \(L(\mathfrak{u})\). For, by Theorem 1, \(\mathfrak{u}\) is isomorphic to \(\mathfrak{B} - \mathfrak{R}\) under the mapping \((17)\). Since \(\mathfrak{u}_0\) is an ideal of \(\mathfrak{u}\), the mapping
\[(28) \quad x_0 \to [D_{x_0}], \quad x_0 \text{ in } \mathfrak{u}_0,\]
determines an ideal \(\mathfrak{g}_0\) of \(\mathfrak{B} - \mathfrak{R}\), and \(\mathfrak{g}_0 \leq \mathfrak{u}_0\).

Let \(\Sigma\) be an automorphism of \(\mathfrak{B}\) such that \(\mathfrak{B} \Sigma = \mathfrak{B}\) and \(\mathfrak{D}_0 \Sigma = \mathfrak{D}_0\). Then \(\Sigma\) determines an automorphism \(S_{\Sigma}\) of \(\mathfrak{g}_0\) as follows:
\[(29) \quad S_{\Sigma}: \quad x_0 \to [D_{x_0}] \to [D_{x_0} \Sigma] = [D_{x_0'}] \to x_0' = x_0 S_{\Sigma},\]
for \(x_0, x_0'\) in \(\mathfrak{u}_0\). For \(\mathfrak{D} = I\mathfrak{g} + \mathfrak{D}_0\), and any automorphism of \(\mathfrak{B}\) leaves invariant the subspace \(I\mathfrak{g}\) of order 1, so that \(\mathfrak{D} \Sigma = \mathfrak{D}\). Then by Theorem 2, \(\Sigma\) determines an automorphism \(S_{\Sigma}\) of \(\mathfrak{B}\). But \(S_{\Sigma}\) induces on \(\mathfrak{u}_0\) the automorphism \((29)\) since \(D_{x_0} \Sigma = D_{x_0'}\) in \(\mathfrak{D}_0\) implies \(x_0'\) is in \(\mathfrak{u}_0\). Thus \(x_0 \to [D_{x_0}] \to [D_{x_0} \Sigma] = [D_{x_0'}] \to x_0' = x_0 S_{\Sigma}\) is in \(\mathfrak{u}_0\), or \(S_{\Sigma}\) induces \(S_{\Sigma}\) on \(\mathfrak{u}_0\).

Theorem 5. Let \(\mathfrak{u}_0\) be a non-associative algebra without unity element, and let \(\mathfrak{u} = I\mathfrak{g} + \mathfrak{u}_0\). Let \(S_\Sigma\) be the group of automorphisms \(\Sigma\) of \(T(\mathfrak{u})\) such that \(R(\mathfrak{u}_0, \mathfrak{u}) \Sigma = R(\mathfrak{u}_0, \mathfrak{u}), L(\mathfrak{u}_0, \mathfrak{u}) \Sigma = L(\mathfrak{u}_0, \mathfrak{u}), \mathfrak{u}_T \Sigma = \mathfrak{u}_T\). Then the correspondence \(S_0 \to S \to \Sigma\) of \((27)\) and \((12)\) is an isomorphism of the automorphism group \(S_0\) of \(\mathfrak{u}_0\) onto \(S_\Sigma\).

For if \(S_0\) is in \(S_0\), then \(S_0 \to S \to \Sigma\) in \(S_\Sigma\) and \(\Sigma \to S_{\Sigma} = S\) by Theorem 3. But then \(S\) induces the automorphism \(S_{\Sigma}\) within \(\mathfrak{u}_0\). That is, \(S_{\Sigma} = S_0\). Conversely, if \(\Sigma\) is in \(S_\Sigma\), then \(\Sigma \to S_{\Sigma}\) in \(S_0\) by \((29)\). But \(S_{\Sigma} \to S_{\Sigma} \to \Sigma_{\Sigma}\) by \((27)\) and \((12)\) and \(\Sigma_{\Sigma} = \Sigma\) by Theorem 3. Hence the
mapping \(S_0 \mapsto S \mapsto \Sigma \) of \(\mathfrak{g}_0 \) on \(\mathfrak{g}'_0 \) is one-to-one, and is by Theorem 3 an isomorphism.

The results analogous to Theorem 4 for algebras \(\mathfrak{A}_0 \) without unity quantity may be stated as follows: let \(\mathfrak{g}'_0 \) be the group of automorphisms \(\Sigma \) of \(E(R(\mathfrak{A})) \) such that \(R(\mathfrak{A}_0, \mathfrak{A}) \Sigma = R(\mathfrak{A}_0, \mathfrak{A}) \), \(\mathfrak{g}'_R \Sigma = \mathfrak{g}'_R \). Then the correspondence \(S_0 \mapsto S \mapsto \Sigma \) of (27) and (13) is an isomorphism of the automorphism group \(\mathfrak{g}_0 \) of \(\mathfrak{A}_0 \) onto \(\mathfrak{g}'_0 \). Let \(\mathfrak{g}'_L \) be the group of automorphisms \(\Sigma \) of \(E(L(\mathfrak{A})) \) such that \(L(\mathfrak{A}_0, \mathfrak{A}) \Sigma = L(\mathfrak{A}_0, \mathfrak{A}) \), \(\mathfrak{g}'_L \Sigma = \mathfrak{g}'_L \). Then the correspondence \(S_0 \mapsto S \mapsto \Sigma \) of (27) and (14) is an isomorphism of \(\mathfrak{g}_0 \) onto \(\mathfrak{g}'_L \).

4. Inner automorphisms \(\Sigma \) of \(T(\mathfrak{A}) \). An automorphism \(\Sigma \) of the associative algebra \(T(\mathfrak{A}) \) is called inner in case \(T \mapsto T \Sigma = K^{-1}TK \) for some nonsingular element \(K \) of \(T(\mathfrak{A}) \). We are concerned in this section with automorphisms \(S \) of \(\mathfrak{A} \) which determine inner automorphisms \(\Sigma \) of \(T(\mathfrak{A}) \) under (12).

The group \(\mathfrak{g} \) of all inner automorphisms of \(T(\mathfrak{A}) \) is an invariant subgroup of the automorphism group of \(T(\mathfrak{A}) \). If \(\mathfrak{g}_T \) is the group of automorphisms of \(T(\mathfrak{A}) \) described in Theorem 3, then the intersection \(\mathfrak{g}_T \cap \mathfrak{g} \) is an invariant subgroup of \(\mathfrak{g}_T \). But then there is an invariant subgroup \(\mathfrak{g} \) of the automorphism group \(\mathfrak{g} \) of \(\mathfrak{A} \) such that \(\mathfrak{g} \cong \mathfrak{g}_T \cap \mathfrak{g} \) under the correspondence \(S \mapsto \Sigma \) of (12). The elements of \(\mathfrak{g} \) are characterized as those automorphisms of \(\mathfrak{A} \) which are themselves elements of \(T(\mathfrak{A}) \) by

Theorem 6. Let \(\mathfrak{A} \) be a non-associative algebra over \(\mathfrak{g} \) with unity element 1 and automorphism \(S \) determining an automorphism \(\Sigma \) of \(T(\mathfrak{A}) \) by (12). Then \(\Sigma \) is inner if and only if \(S \) is in \(T(\mathfrak{A}) \).

If \(S \) is in \(T(\mathfrak{A}) \), then \(T \mapsto T \Sigma = S^{-1}TS \) is an inner automorphism of \(T(\mathfrak{A}) \). Conversely, if \(\Sigma \) is inner, there exists a nonsingular element \(K \) of \(T(\mathfrak{A}) \) such that \(T \Sigma = K^{-1}TK \) for all \(T \) in \(T(\mathfrak{A}) \). In particular, \(R_{xS} = R_x \Sigma = K^{-1}R_xK \). Let \(1K = k \) so that \(xSL_k = k \cdot xS = kR_{xS} = 1KK^{-1}R_xK = xK \) for all \(x \) in \(\mathfrak{A} \), \(SL_k = K \). Since \(S \) and \(K \) are nonsingular, \(L_k^{-1} \) exists. Moreover, \(L_k^{-1} \) is in \(T(\mathfrak{A}) \), and \(S = KL_k^{-1} \) is in \(T(\mathfrak{A}) \).

Perhaps it should be pointed out that Theorem 6 yields nothing in the case of central simple algebras (that is, algebras which are simple for all scalar extensions). For although it is true that, if \(\mathfrak{A} \) is central simple, then \(T(\mathfrak{A}) \) is also and—by a well known theorem concerning associative algebras—every automorphism \(\Sigma \) of \(T(\mathfrak{A}) \) is inner, so that Theorem 6 implies that every automorphism \(S \) of \(\mathfrak{A} \) is in \(T(\mathfrak{A}) \), it is also true [1, §8] that in this case \(T(\mathfrak{A}) = (\mathfrak{g})_n \), the algebra
of all linear transformations on \mathfrak{A}. Of course it is vacuous then to say that S is in $T(\mathfrak{A})$.

5. The right ideals $\mathfrak{R}_T, \mathfrak{R}_R, \mathfrak{R}_L$. We now make a more thorough analysis of the right ideals $\mathfrak{R}_T, \mathfrak{R}_R, \mathfrak{R}_L$ of $T(\mathfrak{A}), E(R(\mathfrak{A})), E(L(\mathfrak{A}))$, respectively, and arrive in particular at criteria for the (right, left) simplicity of an algebra \mathfrak{A} with unity quantity.

Theorem 7. An algebra \mathfrak{A} with unity quantity is both commutative and associative if and only if $\mathfrak{R}_T = 0$.

For $\mathfrak{R}_T = 0$ implies that $L_x - R_x = R_x R_y - R_{xy} = 0$ for all x, y in \mathfrak{A}. That is,

$$\begin{align*}
R_x &= L_x, \\
R_x R_y &= R_{xy},
\end{align*}$$

\mathfrak{A} is both commutative and associative. Conversely, if (30) holds for all x, y in \mathfrak{A}, then T in $T(\mathfrak{A})$ has the form $T = f(R_x, L_x, R_y, \ldots) = g(R_x, R_y, \ldots) = R_{g(x, y, \ldots)}$. Then $1T = 0$ implies $g(x, y, \ldots) = 0$ or $T = 0$. Hence $\mathfrak{R}_T = 0$.

The center \mathfrak{Z} of \mathfrak{A} consists of all elements c in \mathfrak{A} such that

$$\begin{align*}
xc &= cx, \\
c(xy) &= (cx)y = x(cy),
\end{align*}$$

or equivalently

$$\begin{align*}
cL_x &= cR_x, \\
cR_{xy} &= cR_x R_y = cR_y L_x
\end{align*}$$

for all x, y in \mathfrak{A}.

Theorem 8. An element c is in the center \mathfrak{Z} of an algebra \mathfrak{A} with unity quantity if and only if $c\mathfrak{R}_T = 0$.

Certainly $L_x - R_x, R_{xy} - R_x R_y, R_{xy} - R_y L_x$ are in \mathfrak{R}_T for all x, y in \mathfrak{A}. Hence if $c\mathfrak{R}_T = 0$, it follows that $c(L_x - R_x) = c(R_{xy} - R_x R_y) = c(R_{xy} - R_y L_x) = 0$ or (32) holds, c is in the center of \mathfrak{A}. Conversely, if c is in the center of \mathfrak{A}, and if we write T in $T(\mathfrak{A})$ as in (8), it is seen by repeated application of (32) that $cT = cf(R_x, L_x, R_y, \ldots) = cR_{g(x, y, \ldots)}$, where the non-associative polynomial $g(x, y, \ldots) = 1f(R_x, L_x, R_y, \ldots) = 1T$. But if T is in \mathfrak{R}_T, then $1T = 0$ so that $g(x, y, \ldots) = 0$ and $cT = 0$, $c\mathfrak{R}_T = 0$.

An algebra \mathfrak{A}, which is not the zero algebra of order 1, is called simple (right simple, left simple) in case the only ideals (right ideals, left ideals) of \mathfrak{A} are 0 and \mathfrak{A}.

Theorem 9. A non-associative algebra \mathfrak{A} with unity quantity is right simple if and only if \mathfrak{R}_R is a maximal proper right ideal of $E(R(\mathfrak{A}))$.

If \mathfrak{R}_R is a maximal proper right ideal of $E(R(\mathfrak{A}))$, then the only
right ideal of $E(R(\mathfrak{A}))$ containing \mathfrak{M}_R properly is $E(R(\mathfrak{A}))$ itself. We assume that \mathfrak{A} is not right simple, so that \mathfrak{A} has a right ideal $\mathfrak{Q} \neq 0$, \mathfrak{A}. Let \mathfrak{B} be the linear set $\mathfrak{B} = R(\mathfrak{Q}, \mathfrak{A}) + \mathfrak{M}_R$. Then P in \mathfrak{B} has the form $P = R_a + N$, q in \mathfrak{Q}, N in \mathfrak{M}_R, and any element T of $E(R(\mathfrak{A}))$ may be written as $T = R_t + N_1$, t in \mathfrak{A}, N_1 in \mathfrak{M}_R, so that $PT = (R_q + N)(R_t + N_1) = R_q R_t + R_q N_1 + NT = R_q t + (R_q R_t - R_q t) + R_q N_1 + NT$. Now $R_q N_1 = R_a + N_2$ for a in \mathfrak{A}, N_2 in \mathfrak{M}_R, and $1 R_q N_1 = 1 R_a + 1 N_2$ or $a = q N_1$. Since $N_1 = f(R_s, R_y, \ldots)$ while \mathfrak{Q} is a right ideal of \mathfrak{A}, it follows that $a = q N_1 = g f(R_s, R_y, \ldots)$ is in \mathfrak{Q}. Hence $PT = R_q t + q N_1 + (R_q R_t - R_q t) + N_2 + NT$ is in \mathfrak{B} since $q t + q N_1$ is in \mathfrak{Q} while $R_q R_t - R_q t + N_2 + NT$ is in \mathfrak{M}_R. Hence \mathfrak{B} is a right ideal of $E(R(\mathfrak{A}))$ containing \mathfrak{M}_R. Since $\mathfrak{Q} \neq 0$, \mathfrak{A}, it follows that $R(\mathfrak{Q}, \mathfrak{A})$, being of the same dimension over \mathfrak{B} as \mathfrak{Q}, is neither 0 nor $R(\mathfrak{A})$, and then $\mathfrak{B} \neq \mathfrak{M}_R$, $E(R(\mathfrak{A}))$, a contradiction. Hence \mathfrak{A} is right simple.

Conversely, let \mathfrak{B} be any proper right ideal of $E(R(\mathfrak{A}))$ which contains \mathfrak{M}_R. Consider the set \mathfrak{Q} of residue classes $[P]$ modulo \mathfrak{M}_R for P in \mathfrak{B}. Then \mathfrak{Q} is a linear subset of $E(R(\mathfrak{A}))/\mathfrak{M}_R \cong \mathfrak{A}$. Moreover, if $[P]$ is any element of \mathfrak{Q}, we write $P = R_p + N$ for p in \mathfrak{A}, N in \mathfrak{M}_R. Let $[R_t]$ be any element of $E(R(\mathfrak{A}))/\mathfrak{M}_R$. Then $P R_t = R_p R_t + N R_t = P_1$ in \mathfrak{B} since \mathfrak{B} is a right ideal of $E(R(\mathfrak{A}))$. Then

$$[P] [R_t] = [R_p] [R_t] = [R_p R_t] = [P_1]$$

in \mathfrak{Q} by (19), and \mathfrak{Q} is a right ideal of $E(R(\mathfrak{A}))/\mathfrak{M}_R \cong \mathfrak{A}$. If \mathfrak{A} is right simple, then either $\mathfrak{Q} = [0]$ or $\mathfrak{Q} = E(R(\mathfrak{A}))/\mathfrak{M}_R$. In the latter case, \mathfrak{Q} contains $[I]$, \mathfrak{B} contains $I + N_1$ for some N_1 in \mathfrak{M}_R. Since \mathfrak{B} also contains N_1, it follows that I is in \mathfrak{B}, whence $\mathfrak{B} = E(R(\mathfrak{A}))$, a contradiction. Hence $\mathfrak{Q} = [0]$, $\mathfrak{B} = \mathfrak{M}_R$, and \mathfrak{M}_R is a maximal proper right ideal of $E(R(\mathfrak{A}))$.

An exactly symmetrical argument, involving left multiplications instead of right multiplications, suffices to prove

Theorem 10. A non-associative algebra \mathfrak{A} with unity quantity is left simple if and only if \mathfrak{M}_L is a maximal proper right ideal of $E(L(\mathfrak{A}))$.

Only obvious variations on the proof above are required in the proof of

Theorem 11. A non-associative algebra \mathfrak{A} with unity quantity is simple if and only if \mathfrak{M}_T is a maximal proper right ideal of $T(\mathfrak{A})$.

For example, to prove the converse part of the theorem, we let \mathfrak{B} be any proper right ideal of $T(\mathfrak{A})$ which contains \mathfrak{M}_T, and let \mathfrak{Q} be the linear space of residue classes $[P]$ modulo \mathfrak{M}_T for P in \mathfrak{B}. We may write $P = R_p + N = L_p + N_0$ for N, N_0 in \mathfrak{M}_T, and let $[R_t] = [L_t]$ be
any element of $T(\mathfrak{A})-\mathfrak{N}_T$. Then we have (33) as before, where now the quantities involved are residue classes of $T(\mathfrak{A})$ modulo \mathfrak{N}_T, but also we have $PL_t = L_p L_t + N_p L_t = P_2$ in \mathfrak{B} so that $[L_t][P] = [L_t][L_p] = [P_2] = [P_2]$ in \mathfrak{O} by (20), and \mathfrak{O} is an ideal of $T(\mathfrak{A})-\mathfrak{N}_T \subseteq \mathfrak{A}$. The remainder of the proof is as before.

We conclude with an analysis of the structure of the right ideal \mathfrak{N}_T of $T(\mathfrak{A})$ in case \mathfrak{A} of order n over \mathfrak{B} (with unity quantity) is simple. In this case $T(\mathfrak{A}) = (\mathfrak{B})_s$ where the center \mathfrak{B} of \mathfrak{A} is a field of degree t over \mathfrak{F}, and $n = st$ (see [1, §§8, 19]).

Theorem 12. Let \mathfrak{A} be a simple non-associative algebra of order $n = st$ over \mathfrak{B} with unity quantity and with center \mathfrak{B} of degree t over \mathfrak{F}. Then $\mathfrak{N}_T = \mathfrak{R} + (\mathfrak{B})_{s-1}$, where the radical \mathfrak{R} of \mathfrak{N}_T has order $(s-1)$ over \mathfrak{B} and the semi-simple component of \mathfrak{N}_T is the total matric algebra $(\mathfrak{B})_{s-1}$ of degree $(s-1)$ over \mathfrak{B}.

For \mathfrak{A} is central simple over \mathfrak{B}. Let $(1, u_2, \cdots, u_s)$ be a fixed basis of \mathfrak{A} over \mathfrak{B}. Then, since $T(\mathfrak{A}) = (\mathfrak{B})_s$, it follows from Theorem 8 that \mathfrak{N}_T (over \mathfrak{B}) consists of all s-by-s matrices with first row zero. But the structure of this algebra of matrices, with principal idempotent

$E = \begin{pmatrix} 0 & 0 \\ 0 & I_{s-1} \end{pmatrix},$

is easily determined. Its radical \mathfrak{R} consists of all matrices (with elements in \mathfrak{B}) of the form

$\begin{pmatrix} 0 & 0 \\ U & 0 \end{pmatrix}$

where U is any $(s-1)$-by-1 matrix. Its semi-simple component consists of all matrices (with elements in \mathfrak{B}) of the form

$\begin{pmatrix} 0 & 0 \\ 0 & V \end{pmatrix}$

where V is any $(s-1)$-rowed square matrix. This is a total matric algebra $(\mathfrak{B})_{s-1}$.

References