A PRIME-REPRESENTING FUNCTION

W. H. MILLS

A function f(x) is said to be a prime-representing function if f(x) is a prime number for all positive integral values of x. It will be shown that there exists a real number A such that $[A^{s^*}]$ is a prime-representing function, where [R] denotes the greatest integer less than or equal to R.

Let p_n denote the *n*th prime number. A. E. Ingham¹ has shown that

(1)
$$p_{n+1} - p_n < K p_n^{5/8}$$

where K is a fixed positive integer.

LEMMA. If N is an integer greater than K^{8} there exists a prime p such that $N^{3} .$

PROOF. Let p_n be the greatest prime less than N^3 . Then

(2)
$$N^{3} < p_{n+1} < p_{n} + Kp_{n}^{5/8} < N^{3} + KN^{15/8} < N^{3} + N^{2} < (N+1)^{3} - 1.$$

Let P_0 be a prime greater than K^8 . Then by the lemma we can construct an infinite sequence of primes, P_0 , P_1 , P_2 , \cdots , such that $P_n^3 < P_{n+1} < (P_n+1)^8 - 1$. Let

(3)
$$u_n = P_n^{3-n}, \quad v_n = (P_n + 1)^{3-n}.$$

Then

(4)
$$v_n > u_n, \quad u_{n+1} = P_{n+1}^{3-n-1} > P_n^{3-n} = u_n,$$

(5)
$$v_{n+1} = (P_{n+1} + 1)^{3-n-1} < (P_n + 1)^{3-n} = v_n$$

It follows at once that the u_n form a bounded monotone increasing sequence. Let $A = \lim_{n \to \infty} u_n$.

THEOREM. $[A^{s^{*}}]$ is a prime-representing function.

PROOF. From (4) and (5) it follows that $u_n < A < v_n$, or $P_n < A^{a^n} < P_n + 1$.

Therefore $[A^{s^n}] = P_n$ and $[A^{s^n}]$ is a prime-representing function.

PRINCETON UNIVERSITY

Received by the editors December 23, 1946.

¹ A. E. Ingham, On the difference between consecutive primes, Quart. J. Math. Oxford Ser. vol. 8 (1937) pp. 255–266.