Lattices of continuous functions
Author:
Irving Kaplansky
Journal:
Bull. Amer. Math. Soc. 53 (1947), 617-623
DOI:
https://doi.org/10.1090/S0002-9904-1947-08856-X
MathSciNet review:
0020715
Full-text PDF Free Access
References | Additional Information
- 1. Richard F. Arens, A topology for spaces of transformations, Ann. of Math. (2) 47 (1946), 480–495. MR 17525, https://doi.org/10.2307/1969087
- 2. R. F. Arens and J. L. Kelley, Characterization of the space of continuous functions over a compact Hausdorff space, Trans. Amer. Math. Soc. 62 (1947), 499–508. MR 22999, https://doi.org/10.1090/S0002-9947-1947-0022999-0
- 3. S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
- 4. Garrett Birkhoff, Some problems of lattice theory, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, Amer. Math. Soc., Providence, R. I., 1952, pp. 4–7. MR 0046339
- 5. Samuel Eilenberg, Banach space methods in topology, Ann. of Math. (2) 43 (1942), 568–579. MR 7974, https://doi.org/10.2307/1968812
- 6. I. Gelfand and A. N. Kolmogoroff, On rings of continuous functions on a topological space, C. R. (Doklady) URSS. vol. 22 (1939) pp. 11-15.
- 7. M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), no. 3, 375–481. MR 1501905, https://doi.org/10.1090/S0002-9947-1937-1501905-7
- 8. M. H. Stone, Topological representations of distributive lattices and Brouwerian logics, Časopis Matematiky a Fysiky vol. 67 (1937) pp. 1-25.
- 9. M. H. Stone, A general theory of spectra. II, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 83–87. MR 4092, https://doi.org/10.1073/pnas.27.1.83
Additional Information
DOI:
https://doi.org/10.1090/S0002-9904-1947-08856-X