On the representation in the ring of $p$-adic integers, of a quadratic form in $n$ variables by one in $m$ variables
HTML articles powered by AMS MathViewer
- by Irma Moses PDF
- Bull. Amer. Math. Soc. 54 (1948), 159-166
References
-
1. Helmut Hasse, Ueber die Aequivalenz quadratischer Formen im Körper der rationalen Zahlen, J. Reine Angew. Math. vol. 152 (1923) pp. 205-224.
2. Helmut Hasse, Symmetrische Matrizen im Körper der rationalen Zahlen, J. Reine Angew. Math. vol. 153 (1923) pp. 12-24.
- Burton W. Jones, Related genera of quadratic forms, Duke Math. J. 9 (1942), 723–756. MR 9384 4. Gordon Pall, On the order invariants of integral quadratic forms, Quart. J. Math. Oxford Ser. vol. 6 (1935) pp. 35-38.
- Carl Ludwig Siegel, Equivalence of quadratic forms, Amer. J. Math. 63 (1941), 658–680. MR 5506, DOI 10.2307/2371381 6. C. L. Siegel, Ueber die analytische Theorie der Quadratischen Formen, Ann. of Math. vol. 36 (1935) pp. 535-549.
Additional Information
- Journal: Bull. Amer. Math. Soc. 54 (1948), 159-166
- DOI: https://doi.org/10.1090/S0002-9904-1948-08975-3
- MathSciNet review: 0024940