Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Quadratic forms over fields with a valuation
HTML articles powered by AMS MathViewer

by William H. Durfee PDF
Bull. Amer. Math. Soc. 54 (1948), 338-351
References
  • William H. Durfee, Congruence of quadratic forms over valuation rings, Duke Math. J. 11 (1944), 687–697. MR 11073
  • 2. H. Hasse, Über die darstellbarkeit von Zahlen durch quadratische Formen im Körper der rationalen Zahlen, J. Reine Angew. Math. vol. 152 (1923) pp. 129-148. 3. H. Hasse, Über die Äquivalenz quadratischer Formen in Körper der rationalen Zahlen, J. Reine Angew. Math. vol. 152 (1923) pp. 205-224. 4. H. Hasse, Darstellbarkeit von Zahlen durch quadratische Formen in einem beliebigen algebraischen Zahlkörper, J. Reine Angew. Math. vol. 153 (1924) pp. 113-130. 5. H. Hasse, Äquivalenz quadratischer Formen in einem beliebigen algebraischen Zahlkörper, J. Reine Angew, Math. vol. 153 (1924) pp. 158-162. 6. S. MacLane, Algebraic functions, Ann Arbor, Michigan, 1940. 7. G. Pall, The arithmetical theory of quadratic forms, Toronto, Canada, not yet published. 8. B. L. van der Waerden, Moderne Algebra, vol. 1, 2d ed., Berlin, 1937. 9. E. Witt, Theorie der quadratischen Formen in beliebigen Körpern, J. Reine Angew. Math. vol. 176 (1937) pp. 31-44.
Additional Information
  • Journal: Bull. Amer. Math. Soc. 54 (1948), 338-351
  • DOI: https://doi.org/10.1090/S0002-9904-1948-08999-6
  • MathSciNet review: 0024882