
QUADRATIC FORMS OVER FIELDS WITH A VALUATION 

WILLIAM H. DURFEE 

1. Introduction. The problem of the representation of a number 
by a quadratic form and of the equivalence of two such forms has 
been solved by Hasse [2, 3, 4, 5 J1 for the case where the coefficient 
field is the field of p-adic numbers. In this paper we consider the prob
lem more generally for forms over any field with a non-archimedean 
valuation subject to the restriction that the field is complete with 
respect to the valuation and that its residue-class field has char
acteristic not two. A complete solution is not obtained except under 
certain further restrictions described below, but the general problem 
is shown to be reducible to the case where the forms in question have 
unit coefficients, and to be equivalent to the corresponding problem 
previously studied by the author [l ] for forms over valuation rings. 
It is also shown that a form with unit coefficients represents zero if 
and only if the image form over the residue-class field represents 
zero, and similarly for the equivalence of two such forms. 

In the latter part of the paper we obtain a complete solution for 
forms over certain special fields. The Hubert norm residue symbol is 
introduced and conditions are given under which the Hasse function 
c(f) is invariant. With its aid the necessary and sufficient conditions 
of Hasse, expressed, however, in an improved form due to Pall [7], 
for the representation of zero and the equivalence of two forms over a 
p-adic field are shown to apply more generally to forms over any com
plete field with a valuation for which the residue-class field is finite 
and has characteristic not two; for example, the field of formal power 
series over a finite field of characteristic not two. We give a new 
proof of the invariance of c(f) which is shorter than that given by 
Hasse. 

2. Definitions and notations. Let ƒ = 23? aific&j be a quadratic 
form whose coefficients an are in an integral domain Z>. Let D' be 
any integral domain containing D and m any element of D. ƒ is said 
to represent m over D1 if there exist ai in D' (i = l, 2, • • • , n), not 
all zero, such that ^anona^ — m. If w = 0, ƒ is called a zero form over 
D'. Let g= ^ïbnytyj be another form over D.fis said to be equivalent 
to g over D', written f=gf if there is a linear transformation 
#»= XXl Pi0s ( ^ l » 2, • • • , n), pij in D', which carries ƒ into g 
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and such that the inverse transformation exists and has all its coeffi
cients in D'. When explicit mention of D' is omitted it will be under
stood to be the same as D. The order n of ƒ will be denoted by n(f). 

It is easily shown [9, Theorem IS] that if D is a field the problem 
of the representation of a nonzero element by a form of order n is 
equivalent to the problem of the representation of zero by a form of 
order n+1. In view of this and since we shall be working for the most 
part with fields we shall consider only the latter problem. 

We shall assume that all forms used are nonsingular. When we write 
f+g for the sum of two forms it will always be understood that ƒ and 
g have no variables in common. 

In this paper we shall take D to be either a field K with a non-
archimedean valuation V which is complete with respect to this 
valuation and such that the characteristic of the residue-class field 
K is not two, or its valuation ring R. Thus we can assume all forms 
symmetric, that is, dij — a^ for all i and j , and each equivalent to 
some diagonal form [l, Theorem 1 ]. (For an exposition of the general 
theory of valuations see [6, chap. 2] or [8, chap. 10].) 

Use will often be made of Witt's cancellation theorem [9, Theorem 
4] which says that if/, g and h are forms over a field of characteristic 
not two, then ƒ+£==ƒ+& implies g=h. This was extended by the 
author [l, Theorem 5] to forms over the valuation ring R. 

The form (x\—x%) + {x\—x2ÀJr • • • +(#t-i —a*) will be denoted 
by ij*. Then Hk=aHk over the field K for any nonzero a in K [9, 
p. 34], and Witt showed that every zero form ƒ could be expressed as 
f=f*+Hk where f* is either vacuous or a nonzero form unique to 
within an equivalence [9, Theorem 5]. If f=H, we* shall call ƒ a 
totally zero form. We shall frequently omit the subscript on H when 
there is no ambiguity about its length. 

3. Forms over fields with a valuation. We shall now suppose that 
the domain of coefficients of our forms and transformations is the 
field K. a will denote the homomorphic image in "K of the element a 
of R. 

DEFINITION. If k is an even integer, by f=g+Hh we mean f&g+H* 
if k>0,f2Ég if * = 0, and g£Êf+H-k if *<0. 

LEMMA 1. f-g=Hn{f)+ni0) if and only if f=g+HMf)-n(g). 

PROOF. Suppose n(j)^n(g). I{f"-g=Hnif)+n(0)t then 

f-g+g£=Éf+ E^niç) *Ég+ HntfHnto). 

Cancelling an H2n(o) from each side gives us the desired result. Con-
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versely, iff^g+Hn i f )^n(gh then 

f — g = g + Hn(f)-n(g) — g = Hn(f)-n(g) + #2n<<7) = Hn(f)+n(g)> 

A similar argument disposes of the case #(ƒ) <w(g). 

LEMMA 2. If f = ]>jî at-#J, a* iw X, w a zero form with X ï <W< ~ 0 , 
which has no zero subform, then VaiC$ = Vajctf for all i and j . 

PROOF. None of the ai can be zero since ƒ has no zero subform. Re
arrange the terms of ƒ so that 

2 2 2 2 2 

Va\cL\ = Fa2«2 = • • • = Varar < Var+iar+i ;g • • * g* FanO£n. 

T h e n 
2 2 2 2 2 2 

V(aiai + a2«2 + • • • + araT) = F(a r + ia r + i + • • • + 0n<*n) > Ffliai. 
Let 6 = 020:2+ • • • +ara

2 (b exists since we must have r*z2 for ƒ to 
be a zero form). Hence Vil+ba^a^2) > 0 and VXforV2) = ° - This 
implies that the equation 

x2 + baseer2 = Ö 

over X has the solutions ± 1 which are distinct since the character
istic of 2T is different from two. By the Hensel-Rychlik theorem the 
equation x2+baî1aî2 — 0 has a solution fi in K and therefore 
ai(aifi)2+a2al+ • • • + a r a , = 0 . Since ƒ has no zero subform we 
must have r~n. 

DEFINITION. Let a and b be nonzero elements of K. Then a and b 
are congruent, written a = &, if there is a unitw of J? such that a~bu. 

DEFINITION. A diagonal form J ^ î a ^ will be called a tt#iJ /^rm if 
Vai = 0 for all t. 

DEFINITION. A form of the type XX-i^/*» where bi^bj for i ^ j and 
each ƒ^ is a unit form, is called a standard form. 

Every nonsingular diagonal form over K is equivalent to a stand
ard form under transformations of the type Xi = biy% and a rearrange
ment of terms. 

THEOREM 1. A standard form f' = X X i <Kfr 0*w ^ ^ # zero form if 
and only if at least one of thefi is a zero form. 

PROOF. Suppose ƒ is a zero form. Let g be a zero subform of ƒ which 
does not contain a proper zero subform. g may possibly be ƒ itself. 
Write g as g = ^ajgj, where the aj are certain of the ai and each gj 
is a subform of some ƒ», such an fi contributing only the one sub-
form gj, if any. Let gy = ^2kajkX%, Vajk — O for all j and k. Then 
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l^iaj(lLkajkOL%) =0 for some ajk in K. By Lemma 2, V(ajaji<x&) 
= V{amamio?m^) for each j and m. Therefore a^am. But, since ƒ is a 
standard form, this can happen only if m=j. Hence g must be a sub-
form of some aifi and this ƒ»• will be a zero form. The converse is ob
vious. 

COROLLARY. A standard form j'=* ]C«-ia<A' over K is a totally zero 
form if and only if each of thefi is a totally zero form. 

PROOF. By the above theorem at least one of the ƒ», say / i , is a 
zero form and therefore a i / i=# i / i+ i?2 . Since /=-fiTwC/) we have 
aif[+H2+ X^2^t/t=^n(/). Cancelling an H* from each side leaves us 
# i / i + Yj2aifi=Hn(f)~2' By repeating the argument we have eventually 
fi&Hntfi) for all i. 

In certain important cases, such as £-adic fields, p an odd prime, 
K has the property that ax2+by2 represents 1 whenever Va= Vb = 0. 
When this is true we have the following simple criterion for the repre
sentation of zero by a given form ƒ. 

THEOREM 2. If K has the property mentioned above, then the diagonal 
form f represents zero if and only if it contains a binary subform ax2+by2 

with —aba square in K or a ternary subform ax2+by2+cz2 with a^b^c. 

PROOF. By transformations of the type Xi=diyi and by a rearrange
ment of terms we can express ƒ in a standard form f= ]Cï^/*« If ƒ is 
a zero form, then by the preceding theorem some ƒ», say / i , is a zero 
form. If fi is the binary a'x2+b'y2, we must have —a'b' a square and 
hence if ax2+by2 is the corresponding binary subform of/, — ab is 
also a square. If / i has order greater than two, it has a ternary sub-
form Cxxl+c2xl+czxl with Vci = 0 which by our assumption on K 
represents zero. Since the b\Ci have equal values the corresponding 
coefficients of ƒ are congruent to each other. Conversely, if — ab is a 
square for some binary subform ax2+by2 of/, this binary, and hence/, 
will represent zero. If the ternary subform g = ax2+by2+cz2 has 
a==ô==c, then b^aux(?x and c~au2cl for some units U\ and u%, and 
hence g=a(x2+Uiy2+u2z

2). Since the ternary in the brackets repre
sents zero so does ƒ. 

THEOREM 3. Let ƒ = X)ïa*/* an^ &— iLfibjfLi be equivalent standard 
forms over K. If f or a given ai there is a bj such that ai^bj, then this bj 
is unique and fiÇ=.ujgj+H, where Uj is the unit defined by bj^a^Uj. 
If there is no such bj, then fi=H, and similarly if, for a given bk, bk 
fâaifor all I, then gk=H. 

PROOF. If there is a bj such that a*==6y, it must be unique since the 
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relation of congruence is transitive. Rearrange the terms of ƒ and g 
so that ai ss bi (i = 1, 2, • • • ,t),di?£bj (i, j>t). Then, using Lemma 1, 

t r 8 

l *+i <+i 

By the corollary to Theorem 1, ƒ< —£*«<&==.# (i = l, 2, • • • , /), 
/ .^£T (i = / + l , • • • , r), gySff (j = / + l , • • • , *). By Lemma 1 
f&tiu&i+HeiUigi+H ( î - 1 , 2, • • • , 0. 

As a converse of this theorem we have the following theorem. 

THEOREM 4. Let ƒ= X)ïa*/< a w^ g " Zî^&* ^ standard forms over 
K. ƒ is equivalent to g if 

(0 I>CA)=X>(&), 
(ii) ai^bj implies fi=UjgjJrHn^{)-.n{gi), where Uj is the unit defined 

by bj = ai(^uJy 

(iii) /or a gww at-, a^b^for all j implies f'i=Hn(f{), and for a given 
bk, bk^aifor all I implies gk=HMgk). 

PROOF. Rearrange the terms of ƒ and g so that at=&» 
(*«1, 2, • • • , 0, dM&y (*,J>0. Then 

ƒ; S w*ft + Hn(fi)-.nigi) (i = 1, 2, • • • , /), 

ƒ, S #«(/<> and g/ SS #,.<„> (t, ƒ > /). 
r « r 

1 1 *+l 

= ]£ $<& + S ^'#n(A) + ]£ GiH-n(gi) 
1 1 1 

t « « 

= S hgi + Z bjHniQj) + Z) bjH-niOj) 
1 1 1 

s É fcft + Ê ***•(.,> 
1 «+1 

1 H-l 1 

For fields 2£ in which it is possible to tell whether or not any two 
given elements are congruent, Theorems 1, 3 and 4 reduce the prob
lem of the representation of a given element in K by a given form and 
of the equivalence of two forms to the case of unit forms. In an 
earlier paper [l, Theorem 4] we performed a similar reduction for 
forms over valuation rings. We shall now show that the two prob-
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lems are equivalent by proving (Theorem 5) that two unit forms are 
equivalent over the field K if and only if they are equivalent over the 
valuation ring R. 

First we extend to forms over valuation rings some of the ele
mentary properties of forms over general fields. 

If ƒ and g are forms over R, t h e n / ^ will mean that ƒ is equivalent 
to g over R, while f=g will stand for equivalence over K. 

LEMMA 3. If f = ]Cï<¥& Vai=Vaj^0 (all i, j), represents zero 
over K, and b is any element of R for which Vb=* Vai, then f~by\ — by\ 
+<l>(yz> 3>4, • • • , yn), where <t> is a quadratic form over R. Hence f repre
sents b over R. 

PROOF. Let XXe** = 0, on in K. We can assume that Vai §£ 0 for 
all i and that some a*, say a\, has Vai = 0. Since ƒ is a zero form, some 
other a, say a2, must also have Va* = 0. The transformation over R 

Xi = aiZu x% = otiZi + Zi (i = 2, 3, • • • , n) 

is unimodular and carries ƒ into 

n n 

(1) 2zi]T} aiouzi + ]C ai*i-

Next apply the unimodular transformation 

n 

W\ = si, w2 = b"1^ ajajZjy w% = z% (i = 3, 4, • • • , n) 

which takes (1) into 

( b 2 n \ 

2wi H j - w2 g" X) «ia/wy ) + *(«% w4, • • • , w»)» 
where <£ is a form over R. The unimodular transformation 

b 2 » 
t>i = 2wi H jf w2 5- 2-/ *i<*iWu *i = w< (i = 2, 3, • • • , w) 

# 2 # 2 #2<*2 a«=3 

carries (2) into 

(3) bvivz + 4>(vz, tu, • • • , vn). 

Finally the unimodular transformation 

vi = yi + y2, v2 = yi - y2, f>< = y< (* = 3, 4, • • • , ») 

will take (3) into byl-byl+cfriys, y4, • • • , y»). 
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LEMMA 4. If f— S ï ^ * » Vai — Vaj^O (all i, j), represents over K 
any b for which Vb ~ Vau then f represents b over R and f~by[ 
+i/(y2> y&> ' ' • 1 yn)i where \{/ is a quadratic form over R. 

PROOF. Let X/v*J = &, ai in K. Then ^a^ — bz2 is a zero form 
over K, and by Lemma 3 

23 ai%i — bz £* byi — bz + ^(^2, yz, . . . , yn). 

By Witt's theorem for forms over a valuation ring we can cancel 
— bz2 from each side giving us f—b^+if/fa, 3>3, * • • , 3>n). 

THEOREM 5. Two unit forms are equivalent over K if and only if they 
are equivalent over R. 

PROOF. The condition is obviously sufficient. Let the two forms be 
n n 

ƒ = 23 aiXi and g = 22 biXif Va{ = F£* == 0 for all i, 

and assume jf~g. We shall use induction on the order n of ƒ. The 
theorem is true for unary forms. Suppose that it is true for forms of 
order n — 1. Since ƒ represents ai over R, g represents a\ over K and 
by Lemma 4 

2 , A 2 

* - 2 

for some c*. Since the values of corresponding terms are invariant 
under a transformation over R [l, Lemma 2], F^ = 0 for all i. Ap
plying Witt's cancellation theorem for forms over a field we have 

Z 2^w/ ^ 2 

a%x% zzz / * c%x% 
«'—2 t—2 

which with the induction hypothesis gives us 
n n 

? J 0/%X% —r~ / J C%X%, 

*~2 *=i2 

From this it follows that ƒ~g. 
We shall now show how the equivalence of two unit forms and the 

representation of zero by a unit form are connected with correspond
ing problems for related forms over the residue-class field. 

If ƒ is a form 23iö<** o v e r -&> then ƒ will stand for the form ]Qfö#? 
over the residue-class field ST. 
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THEOREM 6. Iff and g are unit forms, thenf=g over K if and only 
if f~g over "K. 

A proof of this theorem is given in [l, Lemma 1 and Theorem 2]. 

THEOREM 7. A unit form f is a zero form over K if and only if f is a 
zero form over ÎT. 

PROOF. Let ƒ = X)iö**?> Vai = 0, for all i. If ƒ is a zero form over K, 
then there are on in K (i = l, 2, • • • , n), not all zero, such that 
y^aioS = 0. We can assume that Va^O for all i and that some a»-, 
say «i, has Vai = 0. Then XXa« ^O w^ t n Si?^Ö. 

Conversely, suppose that ƒ is a zero form over 2T. Then there are 
a» in K (i = l, 2, • • • , w), not all equal to Ö, such that ]£âj5:<==0. 
Suppose that V<Xi = 0 (* = 1, 2, • • • , r) and Fa»->0 for i>r9 where ai 
is an antecedent in R of a»-. Since not all the ai are zero, r 2> 2. There
fore F(a!ai+a2a:2+ * * • + a ^ ) > Fio â?, and as in the proof of 
Lemma 2 there is a nonzero j3 in K such that ai(aij8)2+a2a2+ * * • 
+aro? = 0. Thus ƒ is a zero form over 2S\ 

COROLLARY. If the unit form f represents over K any m in Kfor which 
Vm > min Va2, where Y)a4Q$ = w, then ƒ w a sert? form over K. 

PROOF. Let Fai = min Fa». Then ^afa^aip^a^m. V(aî2m)>0 
and hence 2X#i *s a z e r o f ° r m o v e r ^ 

4. The Hasse function. The problem of determining when a form 
represents zero and when two forms are equivalent was solved for 
the p-adic case by Hasse. He made extensive use of the Hubert norm 
residue symbol. We shall show that his results do not depend on 
having a p-adic field for a base but can be extended to any complete 
field with a discrete valuation whose residue-class field has char
acteristic not two, and having the property that the product of any 
two non-square units is a square and that ax2+by2 = 1 has a solution 
whenever a and b are both units of R. An example of such a field is 
the one obtained by completing with respect to any one of its valua
tions the field of rational functions over a finite field of characteristic 
not two. 

DEFINITION. If ax2+by2 is a form over K with a and b not zero, we 
define the function (a, b) to have the value 1 or — 1 according as the 
form does or does not represent 1 over K. 

It is obvious that (a, &) = (&, a), (a, — a) = l and that (a, &) = 1 if 
a or b is the square of an element in K. 

LEMMA 5. Let a and b be non-squares. Then 
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(i) a^b implies (a, b) = — 1, 
(ii) a ^ l , b?£l implies (a, b) = 1 if and only if —ab is a square. 

PROOF. Let f~ax2+by2 — z2. If af^6, the only possible standard 
forms of /a re (ax2-z2) +b(y2)f (by2-z2)+a(x2) ora(x2)+b{y2) + (-z2), 
By Theorem l if ƒ is a zero form, at least one of the bracketed sub-
forms must be a zero form. But this is impossible for each of the three 
possibilities. Hence (a, &) = — 1 . 

If a^1, and 6 ^ 1 , the only possible standard forms of ƒ are 
a^+ba^y^ + i — z2) or a(x2)+b(y2) + ( — z2). If — ab is a square then 
f is a zero form. Conversely, if ƒ is a zero form, then the first of the 
above possibilities for a standard form is the correct one and, by 
Theorem 1, x2+ba~1y2 must be a zero form, implying that — ab is a 
square. 

From now on we shall assume that the valuation of K is discrete 
with the integers as the value group, t will denote an element whose 
value is one. 

LEMMA 6. The product rule (a, 6) (a, c) = (a, be) holds for all nonzero 
a, b and c in K if and only if the product of every two non-square units 
is a square and Va = Vb = 0 implies (a, b) = 1. 

PROOF. Suppose that , for all nonzero a, b and c, (a, 6) (a, c) = (a, be). 
If a or b is a square, (a, b) = 1. Hence let a and 6 be two non-square 
units. Chose £ such that Vt — 1. Since Fa = 7 6 = 0, J ^ a , M&> to^6 
and, by Lemma 5, (£, a) = (£, 6) = (to, 6) = -~ 1. The product rule gives 
us (t, b)(ta, b) = (a, b) = 1. Also (/, a) (J, 6) = (/, ab) = 1, and since /f^a& 
we have by Lemma 5 that ab is a square. 

Conversely, suppose that the product of two non-square units is a 
square and that Fa = F6 = 0 implies (a, b) = 1. If (xi, 3̂ 1, 1) is a solu
tion of a#2+6;y2--:s2 = 0 and (#2, 3*2, 1) a solution of ax2+cy2 — s2 = 0, 
then (^1—^2, 3>i3>2, 1*—a#i#2) is a solution of ax2+bcy2 — s2 = 0. I t is 
well known [9, p. 39 ] that if a form represents zero with some zero terms 
in the solution, then there is a solution in which none of the terms is 
zero. Thus (a, b) = (a, c) = 1 implies (a, 6c) = 1. Suppose that (a, b) = 1 
and (a, c) = — 1. If (a, 6c) = 1 , then by the case just discussed, 
(a, be) (a, 6) = (a, c) = 1, a contradiction. Hence (a, 6c) = — 1. Similarly 
(a, 6) = —1 and (a, c) = l imply (a, be) = — 1 . Suppose finally that 
(a, 6) = (a, c) = — 1 . Then a, 6 and c are non-squares. In view of our 
assumption that Va = Vb = 0 implies (a, 6) = 1 we need consider only 
the following cases : 

Casel. Fa = 0, F 6 = F c = l . 
LeJ b = tv, c — tw, where Vt~l. Then Vv=Vw = 0 and (a, 6c) 

= (a, vw) = 1. 
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Case 2. Fa = l, Vb~Vc = 0. 
be is a square and (a, be) = 1. 
Case 3. Fa=F& = l, Fc = 0. 
Let a = /w, 6 = /z/. Then Fw = Fz; = 0. (a, 6) = — 1 implies by Lemma 5 

that —ab and hence — m> is a non-square. Therefore —wc and — abc 
are squares and by Lemma 5 again (a, be) = 1. 

The case Va~l, Vb~0, Vc — l is treated similarly. 
Case 4. F a = F ô = t t ; = l. 
Let a —tu, b~tv, c — tw. Then Vu~Vv—Vw~0. As in the pre

ceding case (a, J) = (a, c) = — 1 implies that — uv and —uw are non-
squares. Hence vw and Jc are squares, and (a, 6c) = 1. 

This establishes the product rule. 

THEOREM S.If'K is a finite field with pm éléments, p an odd prime, 
then the product rule (a, b) (a, c) = (a, be) holds in K for all nonzero 
a, b and c. 

PROOF. The nonzero elements of IT form under multiplication a 
cyclic group of order pm — 1. If fj is a generator of this group, the 
pm elements of "K can be listed as 0, fj, fj2, • • • , fjpm~l = l. If an odd 
power of fj were a square, then fj1/2 would exist in K and we should 
have fj1,2 — fjh for some h, l^h^>pm—l. This implies that fj = fj2h and 
hence that 2As=l (mod pm — 1), an impossibility, since pm— 1 is even. 
Thus ÏT has exactly l + (£m —1)/2 squares and the product of two 
non-squares of K is a square. Using Theorem 7 we see that the 
product of two non-square units of K will be a square. Suppose now 
that Fa==F6 = 0, and consider âx2+hy2~l. x2, and hence âx2—l, 
takes on 1 + (pm—1)/2 different values as # runs through all values of 
Xs. Similarly so does — hy2. Two of these must be equal if we are not 
to have pm+l different elements in ~K. Therefore 5#2+5;y2 = l has a 
solution in "R which obviously is not (0, 0). Hence by Theorem 7 
ax2+by2 = l has a solution in K. From Lemma 6 it follows that the 
product rule is valid in K. 

We shall now assume that not only is the valuation of K discrete 
but also that the product rule holds in K. Under these two assump
tions it is possible to obtain a complete set of criteria for the repre
sentation of zero by a given form and for the equivalence of two forms 
in terms of the Hasse invariants. The conditions are the same as 
those for forms over the £-adic numbers as given first by Hasse [2 and 
3, Theorem 2] and recently in a more convenient form by Pall [7]. 

For any nonsingular diagonal form ƒ = 23ia<^< w e define the func
tion, with the values ± 1 , 
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C(f) - Ri-di.!, di), 

where di = a^a2 • • • a% if i ^ 1 and d0 = 1. This function was introduced 
by Hasse, his definition, though different, being equivalent to ours. 
It is easily shown that if ƒ and g are diagonal forms with no variables 
in common that 

(4) c(f+g)-c(f)c(g)(\fl I «I), 
where |ƒ| is the determinant of/, and for any nonzero m 

(5) c(mf) = (tn, ( - l)»<«+i>/»| f\n+1)c(f). 

THEOREM 9. Iff and g are equivalent diagonal forms, then c(f) ~c{g). 

PROOF. Replacing any coefficient a in ƒ by ac2 for any nonzero c 
obviously does not change c(f). If we interchange two adjacent 
terms of/, say thejth and ( j+l) th , the only change in the expression 
for c(f) will be to replace ( —dy_i, dj) (—dj, dj+i) by (—dy_i, Dj) 
• ( —Dj, dj+i), where Dj—aia2 • • • a/_iay+i. If we use the relation 
Dj—djaj+ia]'1, it is easy to show that these two products are equal 
and hence that c(f) is unchanged. By transformations of these two 
simple types we can express ƒ and g in their standard forms: ƒ=/i+tf2, 
g=gi+tg2, where F(/) = l and the forms ƒ» and gi have unit coeffi
cients, and have c(f)=c(fi+tf2), c(g)=c(g1+tg2). If / i , f2, gu ft all 
exist, then c(Ji)=c(gi) — l (i = l, 2) and by (4) and (5) 

</) = ^(/i + ^2) = ^ / 2 ) ( | A | , | / / 2 | ) 
= ( / , ( - l ) ^ H - i ) / 2 | / 2 | , + 1 ) ( | / l | > r | / 2 | ) 

= ft (-l)^+ 1 ) / 2 | /2|r + 1)( | / lM f), 
c(g) - «to + «0 - ft (- I ) ' ^ » ' 1 ! ft Kl)(l ft I. *•). 

where r and 5 are the respective orders of/2 and g2. By Theorem 3, 
assuming without loss in generality that r ^ s , we have fi=gi+H8-rt 

g2=f2+Ha-r (since the valuation is discrete we can take Uj — 1 in 
Theorem 3). Let * - | f f M | »(-l)<~>/». Then | f c | s | / i | A , |gt| 
Ê*|/2|&and 

since s—r is even. If r = s, this will still be correct, though J3" does not 
exist, provided we take h = l. c(f)c(g)~(t, ( — l)v)(h, tr) where 

v - [f(r + 1) + *($ + 1) + (s - r)(5 + l)]/2 s f ( f - s)/2 (mod 2). 
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If r, and hence s, is even, then so is v and c(f)c(g) = 1. If r is odd, 

c(Mg) - (*, ( - l)H-(-r)/*) 

which is unity since v + (s — r)/2 is even. If any of/ i , /2, gi or g* are 
non-existent, a similar argument can be used to show that in these 
cases too c(f)=c(g). 

THEOREM 10. A form of f order n is a zero form if and only if f or 

n = 2, — | ƒ | is a square, 

n = 3, c{f) = 1, 

n = 4, c(/) = 1 or | ƒ | is not a square, 

n ^ 5, always. 

PROOF. W = 2 : Let f=aix{-\-a2x\. If ƒ is a zero form, then (xtX21)2 

= — af 1^ and — | / | is a square. Conversely, if — | / | is a square, then 
ffi = (—#102)1/2, #2 = #i is a zero of/. 

w = 3: Let / = ai#i+a2#2+<V3- A short computation shows that 
c(f) = (-"0102, — öiöa). If ƒ is a zero form, let £, ?;, f be a solution of 
ƒ = (). We can assume £?*0. Then x~r)(ai£)~~1, y — ÇiaiÇ)-1 is a solu
tion of 

(6) — aia2x
2 — aiazy2 = 1. 

Conversely, if c(/) = l, then (6) has a solution and hence so has 

w = 4: Le t /=ax^+^2^2+^3^3+^4^i We can assume Vai~0 or 1. 
Suppose ƒ is a zero form. If Vai = 0 for all i, then c(f) = 1. If, for some 
i, Vai7*0, then by Theorem 1 either some binary or ternary subform 
with coefficients of like value must represent zero. In the former case 
let ƒ = / i + / 2 . If both the binary subforms f± and ƒ2 represent zero, then 
f=H* and c(/) = l . I f / i is the only binary representing zero, then 
— | / i | is a square while — |ƒ21 is not a square. Hence | / | is not a 
square. Returning to the other possibility let g be the ternary sub-
form representing zero. By the preceding case for w = 3, c(g) = l. If 
f=ax*+g, then, by (4), c(f) = (at \f\)c(g)~(a, \f\). If c(f)*l, then 
I ƒ I cannot be a square. Conversely, suppose c(f) = 1 or | ƒ | is not a 
square. We can assume that ƒ has a standard form / = / i + # 2 , where 
fi — bxx\+b2x% and f2 = bzxl+béxl, Vbi~0 for all i, since any other 
possible standard form for ƒ would imply that ƒ had a ternary sub-
form with coefficients of like value which would by Theorem 2 repre
sent zero. Using (4) we have c(f)~(t, —fabi). If c(/) = l, then, by 
Lemma 5, —6364 is a square, and so f2 and hence ƒ is a zero form. 


