Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

An extension of Alexandroff’s mapping theorem
HTML articles powered by AMS MathViewer

by C. H. Dowker PDF
Bull. Amer. Math. Soc. 54 (1948), 386-391
References
    1. P. Alexandroff, Sur la dimension des ensembles fermés, C. R. Acad. Sci. Paris vol. 183 (1926) pp. 640-642.
  • Paul Alexandroff, Über den allgemeinen Dimensionsbegriff und seine Beziehungen zur elementaren geometrischen Anschauung, Math. Ann. 98 (1928), no. 1, 617–635 (German). MR 1512423, DOI 10.1007/BF01451612
  • Paul Alexandroff, Untersuchungen über Gestalt und Lage abgeschlossener Mengen beliebiger Dimension, Ann. of Math. (2) 30 (1928/29), no. 1-4, 101–187 (German). MR 1502874, DOI 10.2307/1968272
  • Jean Dieudonné, Une généralisation des espaces compacts, J. Math. Pures Appl. (9) 23 (1944), 65–76 (French). MR 13297
  • C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math. 69 (1947), 200–242. MR 20771, DOI 10.2307/2371848
  • C. H. Dowker, An imbedding theorem for paracompact metric spaces, Duke Math. J. 14 (1947), 639–645. MR 22344, DOI 10.1215/S0012-7094-47-01450-6
  • 7. W. Hurewicz, Über Abbildungen von endlichdimensionalen Räumen auf Teilmengen Cartesischer Räume, Preuss. Akad. Wiss. Sitzungsber. (1933) pp. 754-768. 8. C. Kuratowski, Sur un théorème fondamental concernant le nerf d’un système d’ensembles, Fund. Math. vol. 20 (1933) pp. 191-196. 9. C. Kuratowski, Sur le prolongement des fonctions continues et les transformations en polytopes, Fund. Math. vol. 24 (1935) pp. 259-268.
  • Solomon Lefschetz, Topics in Topology, Annals of Mathematics Studies, No. 10, Princeton University Press, Princeton, N. J., 1942. MR 0007094
  • 11. S. Lefschetz, On the mapping of abstract spaces on polytopes, Proc. Nat. Acad. Sci. U.S.A. vol. 25 (1939) pp. 49-50. 12. J. W. Tukey, The intrinsic metric of a polytope, Proc. Nat. Acad. Sci. U.S.A. vol. 25 (1939) p. 51.
Additional Information
  • Journal: Bull. Amer. Math. Soc. 54 (1948), 386-391
  • DOI: https://doi.org/10.1090/S0002-9904-1948-09015-2
  • MathSciNet review: 0024622