quences, \(g(u) - D'(p(u)) \) in \((2')\) being replaced by \(g(u) \), as it may be under conditions on the \(A_n(\sigma) \) discussed above. For by their theorem, given

\[
\int_{-\infty}^{\infty} p(\sigma) \exp \left[-\frac{1}{2} \int \frac{du}{g(u)} \right] d\sigma < \infty,
\]

there exists a function \(F(s) \) holomorphic in \(\Delta \), not identically zero, such that \(|F(s) - \sum_{n=0}^{\infty} e^{-\lambda_n s}| < e^{-\rho(s)} \), hence \(|F(s) - \sum_{n=0}^{\infty} e^{-\lambda_n s}| < A_n(\sigma) \) if \(\{A_n(\sigma)\} \) is any asymptotic sequence with g.l.b. \(A_n(\sigma) = e^{\rho(\sigma)} \); so that \(F(s) \) is represented asymptotically in \(\Delta \) by the series \(\sum d_k e^{-\lambda_k s} \) with \(d_k = 0 \) \((k \geq 1) \) with respect to the asymptotic sequence \(\{A_n(\sigma)\} \), without being identically zero.

BIBLIOGRAPHY

Rice Institute

ERRATA

Vol. 54, p. 1192, lines 2 and 9. For “Hedburg” read “Hedberg.”

Vol. 54, p. 1192, line 10. For “\(2^{28} + 1 \) and \(2^{29} + 1 \)” read “\(2^{28} + 1 \) and \(2^{29} + 1 \).”