REMARKS ON THE NOTION OF RECURRENCE

J. WOLFOWITZ

We give in several lines a simple proof of Poincaré's recurrence theorem.

THEOREM. Let \(\Omega \) be a point set of finite Lebesgue measure, and \(T \) a one-to-one measure-preserving transformation of \(\Omega \) into itself.\(^1\) Let \(B \subset A \subset \Omega \) be measurable sets such that, if \(b \in B \), \(T^m b \in A \) for all positive integral \(m \). Then the measure \(m(B) \) of \(B \) is 0.

PROOF. First we show that, if \(i < j \), \((T^i B)(T^j B) = 0 \). Suppose \(c \in T^i B \); then from the hypothesis on \(B \) it follows that \(j \) is the smallest integer such that \(T^{-i} c \in A \). Hence \(c \in T^j B \). Now if \(m(B) = \delta > 0 \), \(\Omega \) would contain infinitely many disjunct sets \(T^k B \), each of measure \(\delta \). This contradiction proves the theorem.

The following generalization of the above theorem is trivially obvious: The result holds if we replace the hypothesis that \(T \) is measure-preserving by the following: If \(m(D) > 0 \), \(\lim \sup_i m\{T^i(D)\} > 0 \).

Received by the editors April 3, 1948.

Another obvious generalization is this: Let C be the set of all points c of A such that $T^n c \in A$ for only finitely many n. Then $m(C) = 0$ (for $C \subset \sum_{i=0}^{\infty} T^{-i}B$).

The following is a simple derivation of Kac’s theorem on the mean recurrence time.²

Theorem. Let T above be metrically transitive. Let $a \in A - B$, and $n(a)$ be the smallest positive integer such that $T^n a \in A$. Let $m(A) > 0$. Then

$$\int_{A - B} n(a) \, dm = m(\Omega).$$

Proof. Define $A_k = \{ n(a) = k \}$. Let $i < j$, $i' < j'$, $j \neq j'$. We notice:

(a) $(T^iA_j)(T^{i'}A_{j'}) = 0$. For T has a single-valued inverse and $A_iA_{j'} = 0$. If T^iA_j and $T^{i'}A_{j'}$ had a point s in common, then $T^{-i}s \in A_j$, $T^{-i'}s \in A_{j'}$, in violation of the definition of j and j'.

(b) $$\int_{A - B} n(a) \, dm = m \left(\sum_{k=1}^{\infty} \sum_{l=0}^{k-1} T^lA_h \right).$$

(c) Metric transitivity implies that almost every point in Ω lies in some T^iA_h, that is, $m(\sum \sum T^iA_h) = m(\Omega)$.

This proves the desired result.

² Kac, loc. cit. Theorem 2.