Probability methods in some problems of analysis and number theory
HTML articles powered by AMS MathViewer
References
-
S. Banach 1. Ueber einige Eigenschaften der lakunären trigonometrischen Reihen, Studia Mathematica vol. 2 (1930) pp. 207-220.
H. Davenport 1. Ueber Numeri Abundantes, Preuss. Akad. Wiss. Sitzungsber. (1930) pp. 830-837.
- P. Erdös, On the strong law of large numbers, Trans. Amer. Math. Soc. 67 (1949), 51–56. MR 32971, DOI 10.1090/S0002-9947-1949-0032971-4 P. Erdös 2. Note on the number of prime divisors of integers, J. London Math. Soc. vol. 12 (1937) pp. 308-314.
- P. Erdös, On the distribution function of additive functions, Ann. of Math. (2) 47 (1946), 1–20. MR 15424, DOI 10.2307/1969031 P. Erdös 4. On a problem of Chowla and some related problems, Proc. Cambridge Philos. Soc. vol. 32 (1936) pp. 530-540. P. Erdös 5. On the density of some sequences of numbersI, J. London Math. Soc. vol. 10 (1935) pp. 120-125. P. Erdös 6. On the density of some sequences of numbersII, ibid. vol. 12 (1937) pp. 7-11. P. Erdös 7. On the density of some sequences of numbersIII, ibid. vol. 13 (1938) pp. 119-127.
- P. Erdös and M. Kac, The Gaussian law of errors in the theory of additive number theoretic functions, Amer. J. Math. 62 (1940), 738–742. MR 2374, DOI 10.2307/2371483
- Paul Erdös and Aurel Wintner, Additive arithmetical functions and statistical independence, Amer. J. Math. 61 (1939), 713–721. MR 247, DOI 10.2307/2371326
- W. Feller, The fundamental limit theorems in probability, Bull. Amer. Math. Soc. 51 (1945), 800–832. MR 13252, DOI 10.1090/S0002-9904-1945-08448-1
- Jacqueline Ferrand and Robert Fortet, Sur des suites arithmétiques équiréparties, C. R. Acad. Sci. Paris 224 (1947), 516–518 (French). MR 19258
- R. Fortet, Sur une suite egalement répartie, Studia Math. 9 (1940), 54–70 (French, with Ukrainian summary). MR 5546, DOI 10.4064/sm-9-1-54-70 G. H. Hardy and S. Ramanujan 1. The normal number of prime factors of a number n, Quart. J. Math. Oxford Ser. vol. 48 (1917) pp. 76-92.
- Philip Hartman, The divergence of non-harmonic gap series, Duke Math. J. 9 (1942), 404–405. MR 6768
- Shin-ichi Izumi and Tatsuo Kawata, On certain series of functions, Tôhoku Math. J. 46 (1939), 91–105. MR 1322
- M. Kac, Note on Power Series with Big Gaps, Amer. J. Math. 61 (1939), no. 2, 473–476. MR 1507389, DOI 10.2307/2371514 M. Kac 2. Distribution properties of certain gap sequences, Bull. Amer. Math. Soc. Abstract 53-7-290. Details will be given in the paper by Erdös, Ferrand, Fortet and Kac (see footnote 2). The following misprint should be corrected: ω/2cos πk| should be replaced by ω/2|cos πx|.
- M. Kac, On the distribution of values of sums of the type $\sum f(2^k t)$, Ann. of Math. (2) 47 (1946), 33–49. MR 15548, DOI 10.2307/1969033
- M. Kac, Convergence of certain gap series, Ann. of Math. (2) 44 (1943), 411–415. MR 8432, DOI 10.2307/1968972
- M. Kac, Convergence and divergence of non-harmonic gap series, Duke Math. J. 8 (1941), 541–545. MR 5143 M. Kac 6. Sur les fonctions indépendantesV, Studia Mathematica vol. 7 (1938) pp. 96-100.
- M. Kac, Note on the distribution of values of the arithmetic function $d(m)$, Bull. Amer. Math. Soc. 47 (1941), 815–817. MR 4845, DOI 10.1090/S0002-9904-1941-07575-0
- M. Kac, R. Salem, and A. Zygmund, A gap theorem, Trans. Amer. Math. Soc. 63 (1948), 235–243. MR 23937, DOI 10.1090/S0002-9947-1948-0023937-8 S. Kaczmarz and H. Steinhaus 1. Le système orthogonal de M. Rademacher, Studia Mathematica vol. 2 (1930) pp. 231-247. A. Khintchine and A. Kolmogoroff 1. Ueber Konvergenz von Reihen deren Glieder durch den Zufall bestimmt werden, Rec. Math. (Mat. Sbornik) vol. 32 (1925) pp. 668-677.
- A. Kolmogoroff, Über die Summen durch den Zufall bestimmter unabhängiger Größen, Math. Ann. 99 (1928), no. 1, 309–319 (German). MR 1512451, DOI 10.1007/BF01459098 A. Kolmogoroff 2. Bemerkungen zu meiner Arbeit "Ueber die summen Zufälliger Grössen", ibid. vol. 102 (1929) pp. 484-489. A. Kolmogoroff 3. Une contribution à l’étude de la convergence des séries de Fourier, Fund. Math. vol. 5 (1924) pp. 96-97. P. Lévy 1. Sur les séries dont les termes sont des variables éventuelles indépendantes, Studia Mathematica vol. 3 (1931) pp. 119-155. W. J. LeVeque 1. On the distribution of values of number-theoretic functions, Thesis, Cornell University. R. E. A. C. Paley and A. Zygmund 1. On some series of functions (1), Proc. Cambridge Philos. Soc. vol. 26 (1930) pp. 337-357. R. E. A. C. Paley and A. Zygmund 2. On some series of functions (2), ibid. pp. 458-474. R. E. A. C. Paley and A. Zygmund 3. On some series of functions (3), ibid. vol. 28 (1932) pp. 190-205.
- Hans Rademacher, Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen, Math. Ann. 87 (1922), no. 1-2, 112–138 (German). MR 1512104, DOI 10.1007/BF01458040 D. Raikov 1. On some arithmetical properties of summable functions, Rec. Math. (Mat. Sbornik) N.S. vol. 1 (1936) pp. 377-383.
- Frédéric Riesz, Sur la théorie ergodique, Comment. Math. Helv. 17 (1945), 221–239 (French). MR 14218, DOI 10.1007/BF02566244
- R. Salem and A. Zygmund, On lacunary trigonometric series, Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 333–338. MR 22263, DOI 10.1073/pnas.33.11.333
- R. Salem and A. Zygmund, On lacunary trigonometric series. II, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 54–62. MR 23936, DOI 10.1073/pnas.34.2.54 I. J. Schoenberg 1. Ueber die asymptötische Verteilung reeller Zahlenmod 1, Math. Zeit. vol. 28 (1928) pp. 171-200.
- I. J. Schoenberg, On asymptotic distributions of arithmetical functions, Trans. Amer. Math. Soc. 39 (1936), no. 2, 315–330. MR 1501849, DOI 10.1090/S0002-9947-1936-1501849-X H. Steinhaus 1. Les probabilités dénombrables et leur rapport à la théorie de la mesure, Fund. Math. vol. 4 (1922) pp. 286-310. P. Turán 1. Ueber einige Verallgemeinerungen eines Satzes von Hardy und Ramanujan, J. London Math. Soc. vol. 11 (1936) pp. 125-133. A. Zygmund 1. On the convergence of lacunary trigonometric series, Fund. Math. vol. 16 (1930) pp. 90-107.
Additional Information
- Journal: Bull. Amer. Math. Soc. 55 (1949), 641-665
- DOI: https://doi.org/10.1090/S0002-9904-1949-09242-X
- MathSciNet review: 0031504