REAL ROOTS OF DIRICHLET L-SERIES

J. BARKLEY ROSSER

Let k be a positive integer. Let χ be a real, non-principal character (mod k) and

$$L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$$

be the corresponding L-series, which converges uniformly for $R(s) \geq \epsilon > 0$. If it could be shown that uniformly in k there is no real zero of $L(s, \chi)$ for

$$s \geq 1 - \frac{A}{\log k},$$

where A is a constant, then the existing theorems on the distribution of primes in arithmetic progressions could be greatly improved (see [1]). Moreover by Hecke's Theorem (see [2]) it would follow that uniformly in k

$$L(1, \chi) > \frac{B}{\log k}$$

where B is a constant. This would be a considerable improvement over Siegel's Theorem (see [3]), and would lead to an improved lower bound for the class number of an imaginary quadratic field.

In the present paper, we shall show that for $2 \leq k \leq 67$, $L(s, \chi)$ has no positive real zeros. By combining this information with the results of [1], we infer very sharp estimates on the distribution of primes in arithmetic progressions of difference k for $k \leq 67$.

The methods used for $k \leq 67$ certainly will suffice for many other k's greater than 67. They may possibly suffice for all k, but we can find no proof of this.\(^2\)

In [5], S. Chowla has considered the positive real zeros of $L(s, \chi)$, and shown that for many explicit k's, no positive real zeros exist. However Chowla could not settle whether his methods would suffice

\(^1\) Numbers in brackets refer to the bibliography at the end of the paper.

\(^2\) These methods have been tried on all $k \leq 227$ and it has been ascertained that except for the cases $k = 148$ and $k = 163$, $L(s, \chi)$ has no positive real zeros for $2 \leq k \leq 227$. Cases $k = 148$ and $k = 163$ are now being studied and any results obtained about them will appear in the Journal of Research of the National Bureau of Standards.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
to handle the difficult cases \(k = 43 \) and \(k = 67 \). In [6], Heilbronn has shown that there exist values of \(k \) for which Chowla's methods are certainly inadequate.

Theorem 1. If \(\chi \) is non-principal \((\text{mod } k)\) and \(\chi(-1) = 1 \), then for all \(s \)

\[
L(s, \chi) = \sum_{n=1}^{\infty} \frac{2s(s+1) \cdots (s+2\alpha-1)}{4^\alpha(2\alpha)!k^{n+2\alpha}} (2s+2\alpha-1)\xi(s+2\alpha) \\
\cdot \sum_{n=1}^{\lfloor k/2 \rfloor} \chi(n)(k-2n)^{2\alpha}.
\]

Proof. For \(s > 1 \), we have

\[
L(s, \chi) = 2^s \sum_{N=0}^{\infty} \sum_{n=1}^{k-1} \frac{\chi(n)}{(2kN+2n)^s} \\
= 2^s \sum_{N=0}^{\infty} \frac{1}{k^s(2N+1)^s} \sum_{n=1}^{k-1} \chi(n) \left(1 - \frac{k-2n}{k(2N+1)}\right)^{-s} \\
= 2^s \sum_{N=0}^{\infty} \frac{1}{k^s(2N+1)^s} \sum_{n=1}^{k-1} \chi(n) \left\{1 + s \frac{k-2n}{k(2N+1)} + \cdots \right\} \\
= 2^s \sum_{N=0}^{\infty} \frac{1}{k^s(2N+1)^s} \left\{\frac{s(s+1)}{3!} \left(\frac{k-2n}{k(2N+1)}\right)^3 + \cdots \right\} \\
= \frac{s}{2k^{s+1}} \left(\sum_{N=0}^{\infty} \left(\frac{2}{2N+1}\right)^{s+1}\right) \sum_{n=1}^{k-1} \chi(n)(k-2n) \\
+ \frac{s(s+1)}{4(2!)k^{s+2}} \left(\sum_{N=0}^{\infty} \left(\frac{2}{2N+1}\right)^{s+2}\right) \sum_{n=1}^{k-1} \chi(n)(k-2n)^2 + \cdots \\
= \frac{s}{2k^{s+1}} (2^{s+1} - 1)\xi(s+1) \sum_{n=1}^{k-1} \chi(n)(k-2n) \\
+ \frac{s(s+1)}{4(2!)k^{s+2}} (2^{s+2} - 1)\xi(s+2) \sum_{n=1}^{k-1} \chi(n)(k-2n)^2 + \cdots .
\]
Since \(\chi \) is non-principal, we have \(k > 2 \), and so if \(k \) is even, we have
\[
\chi([k/2]) = \chi(k/2) = 0.
\]
Now since \(\chi(-1) = 1 \),
\[
\sum_{n=1}^{[k/2]} \chi(n)(k - 2n)^{2\alpha}
= \sum_{n=1}^{[k/2]} \chi(n)(k - 2n)^{2\alpha} + \sum_{n=[k/2]+1}^{k-1} \chi(n)(2n - k)^{2\alpha}
= \sum_{n=1}^{[k/2]} \chi(n)(k - 2n)^{2\alpha} + \sum_{n=k-[k/2]}^{[k/2]} \chi(n)(2(n - k))^{2\alpha}
= \sum_{n=1}^{[k/2]} \chi(n)(k - 2n)^{2\alpha} + \sum_{n=1}^{[k/2]} \chi(k - n)(k - 2n)^{2\alpha}
= 2 \sum_{n=1}^{[k/2]} \chi(n)(k - 2n)^{2\alpha}.
\]
Similarly, we prove
\[
\sum_{n=1}^{k-1} \chi(n)(k - 2n)^{2\alpha+1} = 0.
\]
Thus we infer that the equation stated is valid for \(s > 1 \).

Now since
\[
\left| \sum_{n=1}^{[k/2]} \chi(n)(k - 2n)^{2\alpha} \right| \leq \frac{k}{2} (k - 2)^{2\alpha},
\]
we see that the series on the right converges absolutely and uniformly for all \(s \), and so our theorem follows by analytic continuation.

Theorem 2. If \(\chi \) is non-principal \((\text{mod } k)\) and \(\chi(-1) = -1 \), then for all \(s \)
\[
L(s, \chi) = \sum_{\alpha=0}^{\infty} \frac{s(s + 1) \cdots (s + 2\alpha)}{4^\alpha (2\alpha + 1)! k^{s+2\alpha+1}} (2^{s+2\alpha+1} - 1) \zeta(s + 2\alpha + 1)
\cdot \sum_{n=1}^{[k/2]} \chi(n)(k - 2n)^{2\alpha+1}.
\]

The proof is similar to the proof of Theorem 1.

Although these theorems hold for any non-principal \(\chi \), we shall use them only for real non-principal \(\chi \). We assume henceforth that \(\chi \) is real and non-principal. We let \(\Sigma_M \) denote
\[
\sum_{n=1}^{[k/2]} \chi(n)(k - 2n)^M.
\]

For sufficiently large \(M \) (certainly for \(M \geq k \)), the initial term
\[
\chi(1)(k - 2)^M
\]
of \(\Sigma_M \) dominates the remaining terms, and we infer that \(\Sigma_M > 0 \). If by good chance \(\Sigma_M \geq 0 \) for all \(M \geq 1 \), then by Theorem 1 or Theorem 2 we infer that \(L(s, \chi) > 0 \) for \(s > 0 \), and hence that \(L(s, \chi) \) has no positive real zeros. For \(k \leq 67 \), this happens in a majority of cases.

When considering positive real zeros of \(L(s, \chi) \) it suffices to restrict attention to primitive \(\chi \)'s (and to the \(k \)'s for which there are primitive \(\chi \)'s. See [4, §125]). For primitive \(\chi \)'s, \(\Sigma_M \geq 0 \) for \(M \geq 1 \) for each \(k \leq 67 \) except 43 and 67. Moreover for each such \(k \), the proof of \(\Sigma_M \geq 0 \) is easily accomplished by grouping the terms in groups, each of which is non-negative. Typical such groups are:

I. \(A^M - B^M \), where \(A > B \).

II. \(A^M - B^M - C^M \), where \(A \geq B + C \).

III. \(A^M - B^M - C^M + D^M \), where \(A + D \geq B + C \).

For \(k = 53 \), there occurs the group \(51^M - 49^M - 47^M + 45^M - 43^M + 41^M - 39^M - 37^M \), which we show to be non-negative by writing it as \((44 + 7)^M - (44 + 5)^M - (44 + 3)^M - (44 + 1)^M - (44 - 1)^M + (44 - 3)^M + (44 - 5)^M - (44 - 7)^M \), and expanding each term by the binomial theorem.

For \(k = 43 \) or 67, we have \(\Sigma_2 < 0 \), so that the series in Theorem 2 does not consist entirely of non-negative terms. However, we can show that the initial positive term outweighs the negative terms. We give the proof for \(k = 67 \), since the proof for \(k = 43 \) is similar and easier.

By the functional equation for \(L(s, \chi) \) (see [4, §128]) it follows that if \(L(s, \chi) \) has a zero \(\rho \) with \(1/2 < \rho < 1 \), then it has a zero \(\rho \) with \(0 < \rho < 1/2 \). As it is known that \(L(s, \chi) > 0 \) for \(1 \leq s \), it suffices to prove \(L(s, \chi) > 0 \) for \(0 \leq s \leq 1/2 \). So we take \(k = 67 \) and \(0 \leq s \leq 1/2 \). By Theorem 2,

\[
L(s, \chi) = \frac{2^{s+1} - 1}{67^s} \left\{ \frac{s\zeta(s + 1)}{67} \Sigma_1 \right. \\
+ \frac{s(s + 1)(s + 2)}{6^s} \frac{2^{s+3} - 1}{3!(67)^3} \frac{\zeta(s + 3) \Sigma_3 + \cdots}{4(2^{s+1} - 1)},
\]

where now \(\Sigma_M = \sum_{n=1}^{67} \chi(n)(67 - 2n)^M \). For \(s > 0 \),

\[
\zeta(s + 1) - \frac{1}{s} = \sum_{n=1}^{\infty} \frac{1}{n^{s+1}} - \int_{1}^{\infty} \frac{dx}{x^{s+1}} = \sum_{n=1}^{\infty} \left\{ \frac{1}{n^{s+1}} - \int_{n}^{n+1} \frac{dx}{x^{s+1}} \right\} > 0.
\]

So for \(s \geq 0 \), \(s\zeta(s + 1) \geq 1 \). Also \(\Sigma_1 = 67 \). So
For $0 \leq s$
\[
\frac{2s+2a+1 - 1}{4a(2s+1 - 1)} \leq \frac{2s}{2 - 2^{-s}} \quad \text{and} \quad \frac{d}{ds} \left(\frac{2s}{2 - 2^{-s}} \right) > 0.
\]
So for $0 \leq s \leq 1/2$
\[
\frac{2s+2a+1 - 1}{4a(2s+1 - 1)} \leq \frac{2(1/2)}{2 - 2^{-1/2}} < 0.77346.
\]
Also
\[
\frac{(s+1)(s+2)}{3!} \leq \frac{(3/2) \cdot (5/2)}{3!} = \frac{5}{8}.
\]
Since $\Sigma_3 = -102,845$, we infer
\[
\frac{s(s+1)(s+2)}{3!(67)^3} \geq -\frac{5}{8} \left(\frac{1}{(67)^3} \right) (0.77346)^3 (102,845)
\]
\[
\geq -\frac{5}{8} \left(\frac{0.77346}{300,763} \right) 102,845 < 0.199.
\]
Now for $M \geq 1$,
\[
\Sigma_M = \{ (57 + 8)^M - (57 + 6)^M - (57 + 4)^M + (57 + 2)^M - 57^M
+ (57 - 2)^M - (57 - 4)^M - (57 - 6)^M + (57 - 8)^M \}
+ \{ (43 + 4)^M - (43 + 2)^M - 43^M - (43 - 2)^M + (43 - 4)^M \}
+ 37^M + 35^M + \ldots
\]
\[
> -57^M + \frac{M(M - 1)}{2!} 57^{M-2} \{ 2 \cdot 8^2 - 2 \cdot 6^2 - 2 \cdot 4^2 + 2 \cdot 2^2 \}
+ \frac{M(M - 1)(M - 2)(M - 3)}{4!} 57^{M-4} \{ 2 \cdot 8^2 - 2 \cdot 6^2 - 2 \cdot 4^2 + 2 \cdot 2^2 \}
- 2 \cdot 4^4 + 2 \cdot 2^4 + \ldots
\]
\[
- 43^M + \frac{M(M - 1)}{2!} 43^{M-2} \{ 2 \cdot 4^2 - 2 \cdot 2^2 \} + \ldots
\]
\[\sum_{\alpha=2}^\infty \frac{s(s + 1) \cdots (s + 2\alpha)}{(2\alpha + 1)!((67)^{2\alpha+1})} \cdot \frac{2^{2\alpha+1} - 1}{4^\alpha(2^{\alpha+1} - 1)} \xi(s + 2\alpha + 1) \]

\[> - \frac{63}{128} (0.77346)(1.03693) \sum_{\alpha=2}^\infty \left\{ \frac{(57)^{2\alpha+1}}{67} \cdot \frac{2929}{3249} \right\} \]

\[+ \left(\frac{43}{67} \cdot \frac{1609}{1849} \right) \]

\[> - 0.638. \]
By (1), (2), and (3), for \(0 \leq s \leq 1/2 \),

\[
L(s, \chi) \geq \frac{2^{s+1} - 1}{6^s} \{ 1.000 - 0.199 - 0.638 \} \geq \frac{0.163}{(67)^{1/2}} \geq 0.0199.
\]

So \(L(s, \chi) > 0 \) for \(0 \leq s \).

When \(\chi(-1) = -1 \), Theorem 2 opens up further interesting possibilities. When \(s \to 0 \), the first term of the series is bounded away from zero, while the remaining terms approach zero. Thus one can always infer \(L(s, \chi) > 0 \) for \(0 \leq s \leq \epsilon \), where \(\epsilon \) depends on \(k \). Even for \(\epsilon \) as small as \(A/\log k \), this would be a very worthwhile result, as remarked at the beginning of the paper.

For another possibility, let \(s = 0 \) and \(-2\) in Theorem 2, and evaluate \(L(0, \chi) \) and \(L(-2, \chi) \) by the functional equation. We infer the known result

\[
L(1, \chi) = \frac{\pi}{k^{3/2}} \Sigma_1
\]

and the result

\[
L(3, \chi) = \frac{\pi^3}{6k^{7/2}} \{ k^3 \Sigma_1 - \Sigma_2 \}.
\]

From these follow

\[
\Sigma_3 = k^{7/2} \left\{ \frac{L(1, \chi)}{\pi} - \frac{6L(3, \chi)}{\pi^3} \right\}.
\]

This gives

\[
\Sigma_3 \geq - k^{7/2} \frac{6L(3, \chi)}{\pi^3}.
\]

If one could prove independently any appreciably better result, one could derive a sensational inequality for \(L(1, \chi) \). For instance, if one could prove

\[
\Sigma_3 \geq - k^{7/2} \frac{4}{\pi^3} \geq - k^{7/2} \frac{5L(3, \chi)}{\pi^3},
\]

one could get by (6)

\[
L(1, \chi) > \frac{L(3, \chi)}{\pi^2}.
\]

Another possibility is that one can perhaps derive some connec-
tion between Σ_1 and Σ_3. For instance, if one could prove

$$\Sigma_3 \geq -k^2 \log k \Sigma_1,$$

then by (4) and (6), we could infer

$$L(1, \chi) > \frac{6L(3, \chi)}{\pi^2(1 + \log k)}.$$

Even this would be a very worthwhile result, since the best known at present is, by Siegel's Theorem,

$$L(1, \chi) > \frac{L(3, \chi)}{k^\epsilon}$$

for $\epsilon > 0$ and large k.

Bibliography

Cornell University