462t. Werner Leutert: On the convergence of approximate solutions of the heat equation to the exact solution.

It is shown that an approximate solution of the heat equation can be obtained from a three line difference equation by using only half of the particular solutions of the form $e^{ax}e^{at}$. The approximate solution will converge to the exact solution for all positive values of the mesh ratio $r = \Delta t/(\Delta x)^2$ and it will be stable in the sense that small changes in the initial condition vanish as the time t is increased. von Neumann's test shows instability for all values of $r>0$. (Received July 31, 1950.)

463t. Bertram Yood: On fixed points for semi-groups of linear operators.

Let G be a semi-group of bounded linear operators on a normed linear space X, and G^* be the family of adjoints of elements of G. Sets of conditions are given on G which imply the existence of a nonzero fixed element for G^* (in X^*). In particular if X is the space of bounded functions on a set S, the results show, as a special case, the existence of a finitely-additive measure defined for all subsets of S invariant under a solvable group of 1-1 transformations of S onto S. This fact is due to von Neumann (Fund. Math. vol. 13 (1929)). (Received September 14, 1950.)

APPLIED MATHEMATICS

The automata moves in an artificial environment having positions or states $q_i (i=1, \cdots, N_q)$. It has a repertory of moves that it can make, each called m_{ij} ($j =1, \cdots, N_m$). From state q_i by move m_{ij} it goes to a new uniquely determined state q_k, that is, $(q_i, m_{ij}) = q_k$. Each state q_i is characterized by an aspect a_i having the value ± 1. The a_i is a "drive" in the psychological sense, and when a_i is positive the automata is active. In state q_i the automata initially randomly chooses an m_{ij} where all the m's have an equal probability. In the case $(q_i, m_{ij}) = q_{i+1}$ whose a_{i+1} is negative (drive extinguished), then the probability is increased for choice m_{ij} when in state q_i. In (q_i, m_{ij}) there is a transfer relation such that when some m_{i+k} of q_{i+k} has a probability greater than $2/N_{i+k}$, then the probability of taking m_{ij} in q_i is also increased. The automata as postulated can learn its way through a maze, learning from the goal backwards; it can remember the solution to two or more mazes; it forgets unused information; and its behavior is not predictable. (Received September 5, 1950.)

Starting with the definition of stability in the case of linear varying-parameter systems: a system is stable if and only if every bounded input produces a bounded output, it is shown that the necessary and sufficient condition for stability is that the impulsive response of the system $W(t, \tau)$ should belong to $L(0, \infty)$ for all t ($W(t, \tau)$ is the response at t to a unit impulse applied at $t-\tau$). The system function of a linear varying-parameter system is related to $W(t, \tau)$ through $H(s; t) = \int_0^\infty W(t, \tau)e^{-st}d\tau$. From this it follows that the system function of a stable system is analytic in the right half and on the imaginary axis of the s-plane for all t. This result can be applied with advantage to the investigation of stability of linear varying-parameter systems. In particular, it yields useful criteria of stability for differential equations having periodic coefficients. (Received September 14, 1950.)
ABSTRACTS OF PAPERS

466t. L. A. Zadeh: Initial conditions in linear varying-parameter systems.

Consider a linear varying-parameter system \(N \) whose behavior is described by an \(n \)-th order linear differential equation \(L(p; t)v(t) = u(t) \). Let \(u(t) \) be zero for \(t < 0 \) and let the initial values of \(v(t) \) and its derivatives be \(v^{(o)}(0) = \alpha_v \) (\(o = 0, 1, \ldots, n-1 \)). Let \(H(s; t) \) be the system function of \(N \). When the system is initially at rest (that is, all \(\alpha_v \) are zero), the response of \(N \) to \(u(t) \) may be written as \(v(t) = \mathcal{L}^{-1}\{H(s; t)U(s)\} \) (see abstract 56-6-465). When, on the other hand, some of the \(\alpha_v \) are not zero, the expression for the response to a given input \(u(t) \) becomes \(v(t) = \mathcal{L}^{-1}\{H(s; t)[U(s) + A(s)]\} \), where \(A(s) \) is a polynomial in \(s \) and \(p_0 \) given by \(A(s) = \left\{ \frac{[L(s; 0) - Lp_0(0)]}{(s-p_0)} \right\}v \) (\(p_0 \) represents a differential operator such that \(p_0 v^{(o)}(0) = \alpha_v \)). \(A(s) \) is essentially the Laplace transform of a linear combination of delta-functions of various order (up to \(n-1 \)) such that the initial values of the derivatives of the response of \(N \) to this combination are equal to \(\alpha_v \). (Received September 14, 1950.)

TOPOLOGY

J. H. C. Whitehead has defined (Ann. of Math. vol. 42 (1941) pp. 409-428) a product which associates with elements \(\alpha \in \pi_p(X) \) and \(\beta \in \pi_q(X) \), an element \([\alpha, \beta] \in \pi_{p+q-1}(X) \). The authors show how to define three new products, as follows: (a) A product which associates with elements \(\alpha \in \pi_p(A) \) and \(\beta \in \pi_q(X, A) \), an element \([\alpha, \beta] \in \pi_{p+q-1}(X, A) \). (b) A product which associates with elements \(\alpha \in \pi_p(A, B) \) and \(\beta \in \pi_q(A \cap B) \), an element \([\alpha, \beta] \in \pi_{p+q-1}(A \cap B) \). Here the sets \(A \) and \(B \) are covering of the space \(X = A \cup B \), and \(\pi_p(A \cap B) \) is the \(p \)-dimensional homotopy group of this covering which has been introduced by the authors (Bull. Amer. Math. Soc. Abstract 56-3-208). (c) Let \((X; A, B) \) be a triad (see A. L. Blakers and W. S. Massey, Proc. Nat. Acad. Sci. U.S.A. vol. 35 (1949) p. 323), then there is a product which associates with elements of \(\pi_p(A/B) \) and \(\pi_q(X(X; A, B)) \) an element of \(\pi_{p+q-1}(X; A, B) \). The bilinearity of these three new products is established under suitable restrictions, and relationships between the various products are proved. The behavior of the products under homomorphisms induced by a continuous map or a homotopy boundary operator is also studied. (Received August 30, 1950.)

468t. A. L. Blakers and W. S. Massey: The triad homotopy groups in the critical dimension.

Let \(X^* = X \cup \xi^* \cup \xi^* \cup \cdots \cup \xi^* \) be a space obtained by adjoining the \(n \)-dimensional \((n > 2) \) cells \(\xi^* \) to the connected, simply connected topological space \(X \). Let \(\xi^* = \xi^* \cup \cdots \cup \xi^* \) and \(\xi^* = X \setminus \xi^* \). Assume that the space \(\xi^* \) is arcwise connected, and that the relative homotopy groups \(\pi_p(X, \xi^*) \) are trivial for \(1 \leq p \leq m \), where \(m \geq 1 \). Then it is known that the triad homotopy groups \(\pi_q(X^*; \xi^*, X) \) are trivial for \(2 \leq q \leq m+n-1 \). The authors now show that under the assumption of suitable "smoothness" conditions on the pair \((X, \xi^*) \) (for example, both \(X \) and \(\xi^* \) are compact A.N.R.'s), there is a natural isomorphism of the tensor product \(\pi_n(\xi^*, \xi^*) \otimes \pi_{m+n}(X/\xi^*) \) onto the triad homotopy group \(\pi_{m+n}(X^*; \xi^*, X) \). This isomorphism is defined by means of a generalized Whitehead product. The Freudenthal "Ein­hängung" theorems in the critical dimensions can easily be derived from this theorem;