Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the existence of plane curves with prescribed singularities
HTML articles powered by AMS MathViewer

by Gerald B. Huff PDF
Bull. Amer. Math. Soc. 57 (1951), 411-419
References
  • Arthur B. Coble, Algebraic geometry and theta functions, American Mathematical Society Colloquium Publications, Vol. X, American Mathematical Society, Providence, R.I., 1961. Revised printing. MR 0123958
  • 2. A. B. Coble, Cremona transformations..., Bull. Amer. Math. Soc. vol. 28 (1922) p. 335. 3. A. B. Coble, Cremona’s diophantine equations, Amer. J. Math. vol. 56 (1934) p. 487. 4. J. L. Coolidge, Algebraic plane curves, Oxford, 1931, p. 487. 5. L. Cremona, Sulle transformazioni geometriche delle figure piane, Giornale di Matematiche vol. 1 (1863) p. 306. 6. P. Du Val, On the Kantor group of a set of points in the plane, Proc. London Math. Soc. (2) vol. 42 (1936) pp. 18-51. 7. G. B. Huff, A note on Cremona transformations, Proc. Nat. Acad. Sci. U.S.A. vol. 20 (1934) p. 429.
  • G. B. Huff, Inequalities connecting solutions of Cremona’s equations, Bull. Amer. Math. Soc. 52 (1946), 287–291. MR 15859, DOI 10.1090/S0002-9904-1946-08559-6
  • G. B. Huff, An arithmetic characterization of proper characteristics of linear systems, Amer. J. Math. 68 (1946), 681–688. MR 18880, DOI 10.2307/2371792
  • Gerald B. Huff, Cremona’s equations and the properness inequalities, Duke Math. J. 17 (1950), 385–389. MR 41472
  • Gerald B. Huff, The completion of a theorem of Kantor, Bull. Amer. Math. Soc. 50 (1944), 692–696. MR 12818, DOI 10.1090/S0002-9904-1944-08208-6
  • 12. E. de Jonquieres, Solution d’une question d’analyse indéterminée, C. R. Acad. Sci. Paris vol. 101 (1885) p. 857. 13. S. Kantor, Premier fondements pour une théorie des transformations univoques..., Naples, 1891, p. 297. 14. I. Larice, Due nuove soluzioni generali... delle equazioni di condizione della trasformazioni Cremoniani, Periodico di Matematica per l’Insegnamento Secondario (3) vol. 6, p. 234.
  • Solomon Lefschetz, On the existence of loci with given singularities, Trans. Amer. Math. Soc. 14 (1913), no. 1, 23–41. MR 1500934, DOI 10.1090/S0002-9947-1913-1500934-0
  • 16. M. Noether, Ueber Flächen, welche Schaaren rationaler Kurven besitzen, Math. Ann. vol. 3 (1871) p. 166. 17. F. P. Ruffini, Risoluzione di 2 equazione... di trasformazione Cremoniana, Memorie della R. Accademia delle scienze dell’Istituto di Bologna vol. 8 (1877) p. 483. 18. G. Salmon and O. W. Fiedler, Analytische Geometrie der höheren ebenen Kurven, Leipzig, 1882, p. 83.
  • Mildred E. Taylor, A Determination of the Types of Planar Cremona Transformations with not More than 9 $F$-Points, Amer. J. Math. 54 (1932), no. 1, 123–128. MR 1506879, DOI 10.2307/2371083
  • 20. G. Veronese, ...das Princip des Projicirens und Schneidens..., Math. Ann. vol. 19 (1882) p. 211.
  • Oscar Zariski, On the irregularity of cyclic multiple planes, Ann. of Math. (2) 32 (1931), no. 3, 485–511. MR 1503012, DOI 10.2307/1968247
  • Oscar Zariski, Algebraic surfaces, Classics in Mathematics, Springer-Verlag, Berlin, 1995. With appendices by S. S. Abhyankar, J. Lipman and D. Mumford; Preface to the appendices by Mumford; Reprint of the second (1971) edition. MR 1336146, DOI 10.1007/978-3-642-61991-5
Additional Information
  • Journal: Bull. Amer. Math. Soc. 57 (1951), 411-419
  • DOI: https://doi.org/10.1090/S0002-9904-1951-09542-7
  • MathSciNet review: 0044147