The Riemann zeta and allied functions
HTML articles powered by AMS MathViewer
- by Sarvadaman Chowla PDF
- Bull. Amer. Math. Soc. 58 (1952), 287-305
References
- N. C. Ankeny, E. Artin, and S. Chowla, The class-number of real quadratic fields, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 524–525. MR 43137, DOI 10.1073/pnas.37.8.524
- N. C. Ankeny and S. Chowla, The class number of the cyclotomic field, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 529–532. MR 31942, DOI 10.1073/pnas.35.9.529
- N. C. Ankeny and C. A. Rogers, A conjecture of Chowla, Ann. of Math. (2) 53 (1951), 541–550. MR 41160, DOI 10.2307/1969571 4. E. Artin, Über eine neue Art von L-Reihen, Abh. Math. Sem. Hamburgischen Univ. vol. 3 (1923) pp. 89-108.
- E. Artin, Über die Zetafunktionen gewisser algebraischer Zahlkörper, Math. Ann. 89 (1923), no. 1-2, 147–156 (German). MR 1512140, DOI 10.1007/BF01448095
- P. T. Bateman, S. Chowla, and P. Erdös, Remarks on the size of $L(1,\chi )$, Publ. Math. Debrecen 1 (1950), 165–182. MR 37322
- Herbert Bilharz, Primdivisoren mit vorgegebener Primitivwurzel, Math. Ann. 114 (1937), no. 1, 476–492 (German). MR 1513151, DOI 10.1007/BF01594189
- Richard Brauer, On the zeta-functions of algebraic number fields, Amer. J. Math. 69 (1947), 243–250. MR 20597, DOI 10.2307/2371849
- Richard Brauer, On Artin’s $L$-series with general group characters, Ann. of Math. (2) 48 (1947), 502–514. MR 20105, DOI 10.2307/1969183 10. S. Chowla, Note on Dirichlet’s L-functions, Acta Arithmetica vol. 1 (1935) pp. 113-114.
- S. Chowla, Improvement of a theorem of Linnik and Walfisz, Proc. London Math. Soc. (2) 50 (1949), 423–429. MR 27302, DOI 10.1112/plms/s2-50.6.423
- S. Chowla, A new proof of a theorem of Siegel, Ann. of Math. (2) 51 (1950), 120–122. MR 33313, DOI 10.2307/1969501
- S. Chowla, The last entry in Gauss’s diary, Proc. Nat. Acad. Sci. U.S.A. 35 (1940), 244–246. MR 29394, DOI 10.1073/pnas.35.5.244
- S. Chowla and A. Selberg, On Epstein’s zeta function. I, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 371–374. MR 30997, DOI 10.1073/pnas.35.7.371
- H. Davenport, On character sums in finite fields, Acta Math. 71 (1939), 99–121. MR 252, DOI 10.1007/BF02547751 16. R. Dedekind, Ueber die Anzahl der Idealklassen in reinen kubischen Zahlkörpern, J. Reine Angew. Math. vol. 121 (1900) pp. 40-123.
- Max Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197–272 (German). MR 5125, DOI 10.1007/BF02940746
- E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z. 1 (1918), no. 4, 357–376 (German). MR 1544302, DOI 10.1007/BF01465095
- E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Math. Z. 6 (1920), no. 1-2, 11–51 (German). MR 1544392, DOI 10.1007/BF01202991 20. A. E. Ingham, On the difference between consecutive primes, Quart. J. Math. Oxford Ser. vol. 8 (1937) pp. 255-266.
- A. E. Ingham, On the estimation of $N(\sigma ,T)$, Quart. J. Math. Oxford Ser. 11 (1940), 291–292. MR 3649 22. A. E. Ingham, A note on the distribution of primes, Acta Arithmetics vol. 1 (1936) pp. 201-211.
- Edmund Landau, Über die Wurzeln der Zetafunktion eines algebraischen Zahlkörpers, Math. Ann. 79 (1919), no. 4, 388–401 (German). MR 1511937, DOI 10.1007/BF01498417 24. E. Landau, Über einige ältere Vernutungen und Behauptungen in der Primzahltheorie, Math. Zeit. vol. 1 (1918) pp. 1-24. 25. J. E. Littlewood, Mathematical Notes (12): An inequality for a sum of cosines, J. London Math. Soc. vol. 12 (1947) pp. 217-221.
- W. H. Mills, A prime-representing function, Bull. Amer. Math. Soc. 53 (1947), 604. MR 20593, DOI 10.1090/S0002-9904-1947-08849-2
- L. J. Mordell, Thoughts on number theory, J. London Math. Soc. 21 (1946), 58–74. MR 18653, DOI 10.1112/jlms/s1-21.1.58
- Balth. van der Pol, An electro-mechanical investigation of the Riemann zeta function in the critical strip, Bull. Amer. Math. Soc. 53 (1947), 976–981 (1 plate). MR 22712, DOI 10.1090/S0002-9904-1947-08920-5
- Alfred Rényi, On the large sieve of Ju V. Linnik, Compositio Math. 8 (1950), 68–75. MR 34407
- J. Barkley Rosser, Real roots of Dirichlet $L$-series, Bull. Amer. Math. Soc. 55 (1949), 906–913. MR 32694, DOI 10.1090/S0002-9904-1949-09306-0 31. E. Landau, Real zeros of real Dirichlet L-series, unpublished.
- Karl Schaffstein, Tafel der Klassenzahlen der reellen quadratischen Zahlkörper mit Primzahldiskriminante unter 12 000 und zwischen 100 000–101 000 und 1 000 000–1 001 000, Math. Ann. 98 (1928), no. 1, 745–748 (German). MR 1512434, DOI 10.1007/BF01451623
- Atle Selberg, An elementary proof of the prime-number theorem, Ann. of Math. (2) 50 (1949), 305–313. MR 29410, DOI 10.2307/1969455
- Atle Selberg, Contributions to the theory of Dirichlet’s $L$-functions, Skr. Norske Vid.-Akad. Oslo I 1946 (1946), no. 3, 62. MR 22872
- Atle Selberg, On the normal density of primes in small intervals, and the difference between consecutive primes, Arch. Math. Naturvid. 47 (1943), no. 6, 87–105. MR 12624
- Atle Selberg, Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid. 48 (1946), no. 5, 89–155. MR 20594
- Atle Selberg, On the zeros of Riemann’s zeta-function, Skr. Norske Vid.-Akad. Oslo I 1942 (1942), no. 10, 59. MR 10712
- Atle Selberg, The zeta-function and the Riemann hypothesis, C. R. Dixième Congrès Math. Scandinaves 1946, Jul. Gjellerups Forlag, Copenhagen, 1947, pp. 187–200. MR 0019676 39. A. Selberg, See S. Chowla and A. Selberg (14 above).
- Atle Selberg, On an elementary method in the theory of primes, Norske Vid. Selsk. Forh., Trondhjem 19 (1947), no. 18, 64–67. MR 0022871
- Carl Siegel, Neuer Beweis für die Funktionalgleichung der Dedekindschen Zetafunktion, Math. Ann. 85 (1922), no. 1, 123–128 (German). MR 1512053, DOI 10.1007/BF01449610 42. C. L. Siegel, Neuer Beweis für die Funktionalgleichung der Dedekindschen zeta Funktion, Nachr. Ges. Wiss. Göttingen (1922) pp. 25-31. 43. C. L. Siegel, Über die Klassenzahl algebraischer Zahlkörper, Acta Arithmetica vol. 1 (1935) pp. 83-86. 44. C. L. Siegel, Über Riemann’s Nachlass zur analytischen Zahlentheorie, Quellen and Studien z. geschichte d. Mathematik vol. 2 (1932) pp, 45-80. 45. S. Skewes, On the difference πX-Li(X), J. London Math. Soc. vol. 8 (1933) pp. 277-283. 46. N. G. Tchudakoff, On the zeros of the function ζs, C. R. Acad. Sci. URSS, vol. 1 (1936) pp. 201-204. 47. E. C. Titchmarsh, On van der Corput’s method and the zeta function of Riemann IV, Quart. J. Math. Oxford Ser. vol. 5 (1934) pp. 90-105. 48. E. C. Titchmarsh, The zeros of the Riemann zeta function, Proc. Roy. Soc. London Ser. A vol. 151 (1935) pp. 234-255. 49. E. C. Titchmarsh, The zeros of the Riemann zeta function, Proc. Roy. Soc. London Ser. A vol. 157 (1936) pp. 261-263. 50. E. C. Titchmarsh, On ζsand π(x), Quart. J. Math. Oxford Ser. vol. 9 (1938) pp. 97-108.
- P. Turán, On a theorem of Littlewood, J. London Math. Soc. 21 (1946), 268–275 (1947). MR 21568, DOI 10.1112/jlms/s1-21.4.268
- Paul Turán, On some approximative Dirichlet-polynomials in the theory of the zeta-function of Riemann, Danske Vid. Selsk. Mat.-Fys. Medd. 24 (1948), no. 17, 36. MR 27305
Additional Information
- Journal: Bull. Amer. Math. Soc. 58 (1952), 287-305
- DOI: https://doi.org/10.1090/S0002-9904-1952-09583-5
- MathSciNet review: 0047693