Measure and area
Author:
Herbert Federer
Journal:
Bull. Amer. Math. Soc. 58 (1952), 306-378
DOI:
https://doi.org/10.1090/S0002-9904-1952-09586-0
MathSciNet review:
0049289
Full-text PDF Free Access
References | Additional Information
- A. S. Besicovitch, On the fundamental geometrical properties of linearly measurable plane sets of points, Math. Ann. 98 (1928), no. 1, 422–464. MR 1512414, DOI https://doi.org/10.1007/BF01451603
- A. S. Besicovitch, On surfaces of minimum area, Proc. Cambridge Philos. Soc. 44 (1948), 313–334. MR 28936, DOI https://doi.org/10.1017/s0305004100024336 C. Carathéodory, C. Über das lineare Mass von Punktmengen–eine Verallgemeinerung des Längenbegriffs, Nachr. Ges. Wiss. Göttingen (1914) p. 404. L. Cesari, CE 1. Su di un problema di analysis situs delle spazio ordinario, Rendiconti dell’Istituto Lombardo di Scienze e Lettere vol. 75 (1941) p. 267.
- Lamberto Cesari, Caratterizzazione analitica delle superficie continue di area finita secondo Lebesgue, Ann. Scuola Norm. Super. Pisa Cl. Sci. (2) 11 (1942), 1–42 (Italian). MR 18213
- Lamberto Cesari, Sui punti di diramazione delle trasformazioni continue e sull’area delle superficie in forma parametrica, Univ. Roma Ist. Naz. Alta Mat. Rend. Mat. e Appl. (5) 3 (1942), 37–62 (Italian). MR 18215
- Lamberto Cesari, Criteri di uguale continuità ed applicazioni alla quadratura delle superficie, Ann. Scuola Norm. Super. Pisa Cl. Sci. (2) 12 (1943), 61–84 (Italian). MR 17352
- Lamberto Cesari, Una uguaglianza fondamentale per l’area delle superficie, Atti Accad. Italia. Mem. Cl. Sci. Fis. Mat. Nat. 14 (1944), 891–951 (Italian). MR 0017356
- Jesse Douglas, Solution of the problem of Plateau, Trans. Amer. Math. Soc. 33 (1931), no. 1, 263–321. MR 1501590, DOI https://doi.org/10.1090/S0002-9947-1931-1501590-9
- C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math. 69 (1947), 200–242. MR 20771, DOI https://doi.org/10.2307/2371848 J. Favard, FA. Une définition de la longueur et de l’aire, C. R. Acad. Sci. Paris vol. 194 (1932) p. 344.
- Herbert Federer, Surface area. I, Trans. Amer. Math. Soc. 55 (1944), 420–437. MR 10610, DOI https://doi.org/10.1090/S0002-9947-1944-0010610-1
- Herbert Federer, The Gauss-Green theorem, Trans. Amer. Math. Soc. 58 (1945), 44–76. MR 13786, DOI https://doi.org/10.1090/S0002-9947-1945-0013786-6
- Herbert Federer, Coincidence functions and their integrals, Trans. Amer. Math. Soc. 59 (1946), 441–466. MR 15466, DOI https://doi.org/10.1090/S0002-9947-1946-0015466-0
- Herbert Federer, The $(\varphi ,k)$ rectifiable subsets of $n$-space, Trans. Amer. Math. Soc. 62 (1947), 114–192. MR 22594, DOI https://doi.org/10.1090/S0002-9947-1947-0022594-3
- Herbert Federer, Dimension and measure, Trans. Amer. Math. Soc. 62 (1947), 536–547. MR 23325, DOI https://doi.org/10.1090/S0002-9947-1947-0023325-3
- Herbert Federer, Essential multiplicity and Lebesgue area, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 611–616. MR 27837, DOI https://doi.org/10.1073/pnas.34.12.611
- Herbert Federer, Hausdorff measure and Lebesgue area, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 90–94. MR 47128, DOI https://doi.org/10.1073/pnas.37.2.90
- Felix Hausdorff, Dimension und äußeres Maß, Math. Ann. 79 (1918), no. 1-2, 157–179 (German). MR 1511917, DOI https://doi.org/10.1007/BF01457179
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493 H. Lebesgue, L. Intégrale, longueur, aire, Annali di Matematica Pura ed Applicata vol. 7 (1902) p. 231.
- E. J. McShane, Parametrizations of saddle surfaces, with application to the problem of plateau, Trans. Amer. Math. Soc. 35 (1933), no. 3, 716–733. MR 1501713, DOI https://doi.org/10.1090/S0002-9947-1933-1501713-3
- Edward F. Moore, Convexly generated $k$-dimensional measures, Proc. Amer. Math. Soc. 2 (1951), 597–606. MR 43175, DOI https://doi.org/10.1090/S0002-9939-1951-0043175-8
- Edward F. Moore, Density ratios and $(\phi ,1)$ rectifiability in $n$-space, Trans. Amer. Math. Soc. 69 (1950), 324–334. MR 37894, DOI https://doi.org/10.1090/S0002-9947-1950-0037894-0 C. B. Morrey, Jr., MCB 1. A class of representations of manifolds. I, II, Amer. J. Math. vol. 55(1933) p. 683; vol. 56 (1934) p. 275. C. B. Morrey, Jr., MCB 2. An analytic characterization of surfaces of finite Lebesgue area. I, II, Amer. J. Math. vol. 57 (1935) p. 692; vol. 58 (1936) p. 313.
- Anthony P. Morse, A theory of covering and differentiation, Trans. Amer. Math. Soc. 55 (1944), 205–235. MR 9974, DOI https://doi.org/10.1090/S0002-9947-1944-0009974-4
- H. Federer and A. P. Morse, Some properties of measurable functions, Bull. Amer. Math. Soc. 49 (1943), 270–277. MR 7916, DOI https://doi.org/10.1090/S0002-9904-1943-07896-2
- A. P. Morse and John F. Randolph, The $\phi $ rectifiable subsets of the plane, Trans. Amer. Math. Soc. 55 (1944), 236–305. MR 9975, DOI https://doi.org/10.1090/S0002-9947-1944-0009975-6
- Hans Rademacher, Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und über die Transformation der Doppelintegrale, Math. Ann. 79 (1919), no. 4, 340–359 (German). MR 1511935, DOI https://doi.org/10.1007/BF01498415
- Tibor Radó, The problem of the least area and the problem of Plateau, Math. Z. 32 (1930), no. 1, 763–796. MR 1545197, DOI https://doi.org/10.1007/BF01194665 T. Rado, R 2. On the derivative of the Lebesgue area of continuous surfaces, Fund. Math. vol. 30 (1938) p. 34.
- Tibor Radó, On absolutely continuous transformations in the plane, Duke Math. J. 4 (1938), no. 1, 189–221. MR 1546044, DOI https://doi.org/10.1215/S0012-7094-38-00415-6
- Tibor Radó, On continuous mappings of Peano spaces, Trans. Amer. Math. Soc. 58 (1945), 420–454. MR 14419, DOI https://doi.org/10.1090/S0002-9947-1945-0014419-5
- Tibor Rado, On surface area, Proc. Nat. Acad. Sci. U.S.A. 31 (1945), 102–106. MR 11712, DOI https://doi.org/10.1073/pnas.31.3.102
- Tibor Radó, Length and Area, American Mathematical Society Colloquium Publications, Vol. 30, American Mathematical Society, New York, 1948. MR 0024511
- Arthur Sard, The equivalence of $n$-measure and Lebesgue measure in $E_n$, Bull. Amer. Math. Soc. 49 (1943), 758–759. MR 8837, DOI https://doi.org/10.1090/S0002-9904-1943-08025-1
- Hassler Whitney, On totally differentiable and smooth functions, Pacific J. Math. 1 (1951), 143–159. MR 43878