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1. Introduction. Although the theory of Banach spaces has been 
very popular among American mathematicians during the last 
twenty years, comparatively little attention seems to have been 
given, in this country, to its generalizations, except in the very last 
few years. With the exception of the outstanding work of G. W. 
Mackey [47; 48], most contributions to the general theory of locally 
convex spaces have been made by European mathematicians. There 
may be some interest, therefore, in a survey in broad outline of the 
most recent advances in that field, some of which have not yet ap
peared in print. 

The principal motivation behind the general theory is the same as 
that of Banach himself: namely, a search for general tools which 
might be applied successfully to functional analysis. Two different 
sectors contributed the main influences: the first originated in the 
work of G. Köthe, O. Toeplitz, and their students on sequence 
spaces [32-46; 26; 50; 11 ], which began around 1934 and was partly 
related to the theory of functions of a complex variable [62 ] ; many 
of the ideas which were to become fundamental in the later develop
ment of the general theory appeared there for the first time, and also 
a great wealth of illuminating examples and counter-examples. For 
unknown reasons, this remarkable pioneering work has to this day 
remained practically ignored in this country, in spite of its intrinsic 
importance and usefulness. 

The other influence was exerted by the developments of the theory 
of integration, and chiefly through the efforts to free that theory 
from the shackles of the Carathéodory measure theory and turn it 
into a mere chapter of the general theory of topological vector spaces 
[6]. These efforts culminated in L. Schwartz's theory of distributions 
(1945), which could be expressed only in the language of locally con
vex vector spaces [56]; it turned out that for that theory, Banach 
spaces were an utterly inadequate tool, and the realization of that 
fact led to very active research on more general spaces, to which most 
of the results obtained in the last few years owe their origin. 

This recent work has led in particular to a new classification and 
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réévaluation of the whole subject. Part of the interest which attached 
itself to the study of Banach spaces was certainly due to their par
ticularly simple definition by means of a norm, and it is quite nat
ural that this simple case should have been attacked first. But 
analysts are more interested in the properties of a space than in the 
way it is defined; hence the idea, first clearly formulated by L. 
Schwartz, of classifying topological vector spaces according to their 
behavior with regard to the validity of the main theorems of func
tional analysis. For instance, two of the most important of these, the 
Banach-Steinhaus theorem and the closed graph theorem, are valid 
in Banach spaces; it is quite natural to ask in what other spaces they 
are still true. This program has been very actively pushed forward 
within the last few years; its main outcome is that, surprisingly 
enough, practically no important property is really special to Banach 
spaces, although the latter still constitute a very useful technical 
tool in the study of the general theory. 

2. The fundamental notions: I. Locally convex spaces (see [4]). 
We shall be exclusively concerned with vector spaces over the real 
field: the passage to complex spaces offers no difficulty. We shall 
assume that the definition and properties of convex sets are known. 
A convex set A in a vector space E is symmetric if —A=A; then 
0Ç£A if A is not empty. A convex set A is absorbing if for every 
X5*0 in £), there exists a number a^O such that Xx(E-4 for |X| g a ; 
this implies that A generates £ . 

A locally convex space is a topological vector space in which there 
is a fundamental system of neighborhoods of 0 which are convex 
[54; 63]; these neighborhoods can always be supposed to be sym
metric and absorbing. Conversely, if any filter base is given on a 
vector space £ , and consists of convex, symmetric, and absorbing 
sets, then it defines one and only one topology on E for which x+y 
and Xx are continuous functions of both their arguments. 

A semi-norm on a vector space £ is a function p(x) defined on E, 
such that 0^p(x)< + <*> for all x £ £ , p(Kx) = |X|^(x), and p(x+y) 
^p(x)+p(y); the sets defined by any of the relations p(x) <a, 
p(x)^a (ce>0) are convex, symmetric and absorbing; conversely, for 
every such set A, there exists one and only one semi-norm p such that 
A contains the set p(x) < 1 and is contained in p(x) ^ 1. From these 
remarks it follows that the topology of a locally convex space can 
also be defined by a family (pa) of semi-norms, to which correspond 
the neighborhoods of 0 defined by pa(x) <X (X>0); and conversely, 
such a family always defines a locally convex topology. This topology 
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is Hausdorff if and only if, for every X9*0, there is an a such that 
P<x{oc)y^0\ it is metrizable if the family (pa) is denumerable. 

3. The fundamental notions: II. Bounded sets (see [5]). The 
concept of bounded set is easily defined in a normed space: it is a set 
contained in some ball | | x | | ^ i? . To extend this notion when no 
metric is at hand, we may reformulate it as follows: B is bounded if, 
given any ball ||x|| ^ r , there exists a X>0 such that \B is contained 
in that ball. If we say that a set A absorbs a set B if there exists X>0 
such that \B <A, we can therefore say that a bounded set is one which 
is absorbed by every ball. Hence the general definition of a bounded 
set in a locally convex space E : it is a set B which is absorbed by every 
neighborhood of 0 in E [31; 54]. An equivalent definition is that every 
semi-norm which defines the topology of E is bounded on B. If B is 
bounded, so is fiB for any /x; the convex hull of B is bounded, as well 
as its closure. The union of a finite number of bounded sets is 
bounded; so is A +B, if both A and B are bounded. Precompact sets 
(in particularly Cauchy sequences) are bounded. 

The notion of bounded set is not very important in normed 
spaces, because it is then equivalent to the notion of (arbitrary) sub
set of a ball; in other words, there is a fundamental system of 
bounded neighborhoods of 0. This turns out to be exceptional among 
locally convex spaces: indeed, a Hausdorff locally convex space 
possesses bounded neighborhoods of 0 if and only if its topology can be 
defined by means of a norm [31 ]. 

On a locally convex space (as on any abelian topological group) 
there is a uniform structure determined by its topology, and such a 
space E is said to be complete if every Cauchy filter (for that uniform 
structure) converges in E\ for any Hausdorff locally convex space £ , 
there is a well determined locally convex space Ê which is complete 
and in which E is dense (the completion of E). There are important 
locally convex vector spaces (for instance, all infinite-dimensional 
vector spaces with "weak" topologies; see §6 below) which fail to be 
complete; but most spaces which occur in functional analysis have at 
least the weaker property that bounded closed sets are complete; they 
are called quasi-complete spaces. A still weaker property, which suffices 
for many applications, is that every Cauchy sequence is convergent, 
in which case the space is said to be semi-complete. The three notions 
coincide of course for metrizable spaces. 

4. The ©-topologies on the spaces «£(£, F) [5; 7 ] . The most im
portant applications of locally convex spaces to functional analysis 
deal with linear operators, that is, linear mappings from a func-
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tional space E into a functional space F, subject in general to con
ditions related to the topologies of E and F. One is thus led, in par
ticular, to study the set «£(£, F) of all continuous linear mappings of a 
locally convex space E into a locally convex space F. This is itself a 
vector space, and one of the main problems of the theory is to define 
and to study on JÇJJL, F) topologies related in a natural way to those 
of E and F. The known methods of defining topologies on functional 
spaces by conditions of "uniform smallness" on certain subsets [3] 
lead to the following tentative definition: for every subset A of E 
and every neighborhood F of 0 in F, let T(A, V) be the set of all 
w 6 ^ ( E , F) such that u(A)<ZV; one takes as a fundamental system 
of neighborhoods of 0 in <£(£, F) the sets T(A, V), where A runs 
through a family © of subsets of E and V through a fundamental 
system of neighborhoods of 0 in F. I t turns out that this in fact de
fines a locally convex topology (called <S>-topology) on «£(E, F), 
provided the sets A £ @ are bounded in E. If E and F are Hausdorff, 
«£(E, F) is Hausdorff if the union of the sets of © is dense in E. The 
family © can always be supposed to consist of closed, convex, and 
symmetric sets, and to be such that the closed convex hull of the 
union of any finite number of sets of © belongs to ©. Among all 
©-topologies for which the union of the sets of © is E, the finest is 
the topology for which © is the set of all bounded, convex, closed 
symmetric sets of E (topology of bounded convergence on o£(E, JF); 
when E and F are normed spaces, it is the usual norm or "uniform" 
topology on jQt(E1 F)) ; the coarsest is the topology for which © is the 
set of all bounded convex closed finite-dimensional subsets of E 
(topology of pointwise convergence on o£(E, F)). 

A subset H of jÇjiE, F) is bounded for the ©-topology, or ©-
bounded, if and only if for every set A £ © , the union of the sets u(A)t 

where uÇzH, is bounded in F. This notion depends in general on the 
family ©; however, if E is semi-complete (see §3) any set which is 
bounded for the topology of pointwise convergence is also bounded 
for every ©-topology [48; 7] . 

In the next three sections, all spaces will be supposed to be Haus
dorff locally convex spaces. 

5. /-spaces and the Banach-Steinhaus theorem [S; 7] . Particu
larly important subsets of a space °£(E, F) are the equicontinuous 
subsets : such a set H is characterized by the property that for every 
neighborhood F of 0 in F, there is a neighborhood U of 0 in E such 
that u(U)QV for all uÇzH. Equicontinuous subsets are ©-bounded 
for every family ©, but the converse need not hold. A locally convex 
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space E is called a t-space (French: "espace tonnelé") if for every lo
cally convex space F, the subsets H of «£(£, F) which are bounded for 
the topology of pointwise convergence (that is, such that for every 
x(E.E, the set of u{x), where uÇzH, is bounded in F) are equicontinu-
ous (hence bounded for every ©-topology). This property implies 
the Banach-Steinhaus theorem: for every sequence (un) of continu
ous linear mappings of E into F, such that un(x) tends to a limit v(x) 
for every xÇzE, v is a linear continuous mapping of E into F, and un 

converges uniformly to v on every precompact subset of E. More
over, if the sequence (un) is such that the set of un(x) (n = 1, 2, • • • ) 
is bounded in F for every a ;£E, then the same conclusion follows if 
convergence of (un(x)) to a limit is assumed only in a dense subset of 
E, provided F is semicomplete. These properties, as is well known, 
are among the most often used in functional analysis. 

The definition of /-spaces can be given an equivalent formulation 
in which only "internal" properties of E intervene. In a locally con
vex space E, a barrel is a closed, convex, symmetric, and absorbing set; 
closed convex symmetric neighborhoods of 0 are of course barrels. 
Now £ is a /-space if and only if, conversely, all barrels are neighbor
hoods of 0 [7], 

The most important of /-spaces are the Baire spaces, that is, spaces 
in which every denumerable intersection of open dense subsets is 
dense [7]; this is of course the case for Banach spaces and more 
generally (^-spaces (locally convex, metrizable, complete spaces). 
But there are metrizable spaces which are /-spaces without being 
Baire spaces [14]; there are also nonmetrizable complete spaces 
which are /-spaces without being Baire spaces, and complete spaces 
which are not /-spaces. 

The completion of a /-space is a /-space; products and quotients 
of /-spaces are /-spaces [7]. However, a closed subspace of a /-space 
is not necessarily a /-space [20; 15; 61 ]. 

6. Duality in locally convex spaces [S]. The general results on 
spaces c£(E, F) of continuous linear operators apply in particular to 
the space E' =«£(£, R) of continuous linear forms (also called linear 
functionals); this space is called the dual (or conjugate) of E. The 
©-topologies in E' can here be described in the following simple way: 
for any xÇ£E, x'ÇiE', write (x, x') = xf(x); for any subset A of E, the 
polar A0 of A in E' is the set of all xf^E' such that | (x, x')\^l for 
all xÇzA ; it is a convex, symmetric, and absorbing set. The ©-topol
ogy on E' has a fundamental system of neighborhoods which consists 
of finite intersections of the polars of the sets - 4 E © . The most im-
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portant ©-topologies on E ' are (as in general on spaces -£(E, F)) the 
topology of pointwise convergence, also called weak* topology, and 
denoted by cr(E', E) , and the topology of bounded convergence, also 
called strong topology, and denoted by P(E', E) (when E is a normed 
space, /3(E', E) is simply the usual norm topology on E'). 

Equicontinuous subsets of Er are those which are contained in 
polars V° of neighborhoods of 0 in E; these sets V° are weakly* com
pact by Tychonoff's theorem. Equicontinuous sets are strongly 
bounded, and strongly bounded sets are weakly* bounded; in gen
eral these three classes of sets are distinct. However: 

(1) every weakly* bounded set in Ef is equicontinuous if and only 
if £ is a /-space ; 

(2) if E is semi-complete, every weakly* bounded set in E' is 
strongly bounded; 

(3) in order that every strongly bounded set in E ' be equicontinu
ous, it is necessary and sufficient that every barrel in E, which absorbs 
all bounded subsets of E, be a neighborhood of 0; E is then said to 
be a quasi-t-space; the completion of such a space is a /-space (see §5). 

From the last results, it follows easily that E ' is weakly* quasi-
complete (see §3) if E is a /-space, and strongly quasi-complete if E is a 
quasi-/-space (for conditions insuring completeness of E' (with the 
strong topology) see §9). 

Let E" be the dual of the space E' , when the latter is given the 
strong topology; En is called the bidual (or second conjugate) of E ; 
not much is known in general about its properties (for instance, it is 
not known whether E", with the strong topology j3(E", E ') , is always 
complete, even if E is a /-space). 

For every xÇzE, consider the linear form x'—>(x, x') on E ' ; this 
linear form x is weakly* (hence also strongly) continuous, and there
fore x—>x is a linear mapping of E into E" , which is easily seen to be 
1-1. E can thus be imbedded (algebraically) into E " ; the topology 
cr(E, E') induced on E by the weak* topology <r(E", E') is called the 
weak topology on E ; it is coarser than the initial topology on that 
space, but bounded sets and closed convex sets are the same for both 
topologies [48; 9] . In general, the imbedding x—>x is not onto; in 
order that E" = E, it is necessary and sufficient that every bounded 
subset of E be relatively compact for the weak topology cr(E, £ ' ) ; E 
is then said to be semi-reflexive. The topology induced on E by the 
strong topology j6(E", E') is in general distinct (and finer) than the 
initial topology on E ; it is identical to it if and only if E is a quasi-/-
space (see above) ; the weak* closures (in E " ) of the neighborhoods of 
0 in E for the initial topology constitute in that case a fundamental 
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system of neighborhoods of 0 for j8(E", E'). In order that E" = E and 
that the strong topology j3(E", E') coincides with the initial topology 
on E, it is necessary and sufficient that £ be a semi-reflexive /-space ; 
such spaces are called reflexive. The strong dual of a reflexive space is 
a reflexive space. 

Let JF be a closed subspace of a locally convex vector space E; the 
dual F' of F can be identified in a natural way with the quotient space 
E'/F°, where F° is the orthogonal subspace to F in E', and the dual 
of the quotient space E/F can be naturally identified with the sub-
space F° of E'\ moreover, the weak topologies a(F°, E/F) and 
(r(E'/F°, F) are respectively the induced and the quotient topology 
of <T(E', E) [9]. However, when it comes to strong topologies, the 
corresponding results (which are true for Banach spaces) do not hold 
any more, even for (F)-spaces or Montel spaces (see §7). In particu
lar, a closed subspace of a semi-reflexive space is still semi-reflexive, 
but a closed subspace of a reflexive space need not be reflexive, and a 
quotient space of a reflexive space is not even necessarily semi-
reflexive (see, however, §12). 

7. Duality in special spaces. (7^)-spaces (see §5) are next to 
Banach spaces in the applications to functional analysis, and their 
theory has been recently the subject of several papers [13; IS], the 
deepest results being due to A. Grothendieck [20 ]. The dual E' of an 
(F)-space is always complete for the strong topology (see §8) but is 
never metrizable unless E is a Banach space. Moreover, it is not 
always a /-space (for the strong topology) even if E is separable 
[20]; however, when E is reflexive, or when E' itself contains a de-
numerable dense subset for the strong topology (in which case E is 
necessarily separable itself), E' is a /-space [20]. In every case, the 
bidual E" is an (F)-space for the strong topology [20; 15]. 

A locally convex space E is called a Montel space if it is a /-space 
(§5) and if every bounded closed subset of E is compact. A Banach 
space cannot be a Montel space unless it is finite-dimensional ; but a 
great many functional spaces are Montel spaces, for instance the 
space of holomorphic functions in a domain, with the compact-open 
topology, or most spaces which occur in the theory of distributions 
(see §12). A Montel space is reflexive, and its strong dual is again a 
Montel space; but a closed subspace of a Montel space need not be a 
Montel space [20 ] ; and an example has been given [20] of a Montel 
space Ey which is also a separable (F)-space, such that there is a 
quotient space E/F of E which is isomorphic to the Banach space ll 

(hence fails to be reflexive). 
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8. Projective and inductive limits of spaces [4]. Let (Fa), aE.A} 

be a family of locally convex spaces, and let £ be a vector space, 
initially without any topology. Suppose first that for each a there is 
given a linear mapping fa of E into Fa\ then a locally convex topology 
can be defined on E by the condition that it be the coarsest of all 
locally convex topologies on E for which all the ƒ« are continuous; 
with that topology, E is called the projective limit of the Fa (relative 
to the maps ƒ«). If all Fa are Hausdorff spaces, E is Hausdorff if and 
only if for every x5*0 in E there is an a such that fa(x)7£0; the 
mapping x-^{fa(x)) is then a topological imbedding of E into the 
product space Ha£=A ^«- I* *s easily shown that every Hausdorff 
locally convex space can thus be imbedded into a product of Banach 
spaces. In order that a linear mapping g from a locally convex space 
G into a projective limit E be continuous, it is necessary and sufficient 
that fa o g be continuous for each a g i . 

The family (Fa) and E being as above, suppose now that for each a 
there is given a linear mapping ga of Fa into E; then a locally convex 
topology can be defined on E by the condition that it be the finest 
of all locally convex topologies on E for which all the ga are continu
ous; with that topology, E is called the inductive limit of the Fa 

(relative to the maps ga). In order that a linear mapping ƒ from E 
into a locally convex space G be continuous, it is necessary and suffi
cient that ƒ o ga be continuous for each aÇzA. 

When all the Fa are Hausdorff, no simple general condition is 
known which will guarantee that the inductive limit E is Hausdorff; 
this property can, however, easily be checked for all the most im
portant cases of inductive limits reviewed below. An inductive limit 
of /-spaces (respectively quasi-/-spaces) is a /-space (respectively 
quasi-/-space). 

An obvious example of inductive limit is a quotient space F/M 
(with only one ƒ«, namely the natural mapping). Less obvious but 
quite important is the direct sum of an arbitrary family (Ea)a^A of 
locally convex vector spaces [29; 27]: this is the subspace E of the 
(nontopologized) product H«E:A -̂ «» consisting of elements having 
only a finite number of coordinates xa F* 0 ; consider in E the finite 
products Fj = JJ«GJ E<*> e a c n w * t n t n e P roduct topology, and the 
injection gj of Fj in E; the direct sum topology on E is the inductive 
limit of the topologies of the Fj (relative to the injections gj) ; we 
shall write £ = ]C«e^ ^«- Every inductive limit of the Ea (for some 
family of maps) which is the union of the images of the Ea is iso
morphic to a quotient space of ^ « e ^ ^«* ^ a ^ ^a a r e Hausdorff 
spaces, so is their direct sum. Bounded sets in E are those which are 
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contained in one of the products Fj. If all Ea are complete Hausdorff 
spaces, so is E [27]. An interesting particular case is that in which 
all the Ea are one-dimensional: this gives on the direct sum E the 
finest locally convex topology. 

There is a natural duality between direct sum and product [29]. 
More precisely, the dual of a direct sum E = ]C«E^ ^« *s t n e product 
E' = IX*e4 ^« 5 t n e w e a k * topology <r(E', E) is the product of the 
topologies <r(Ea , E a ) , and the strong topology /?(£', E) is the product 
of the strong topologies j8(E«, E«). Conversely, the dual of the 
product E = IJaG^ -^« *s t n e direct sum F'= ]Ca£A -E« > and the 
strong topology /3(F', E) is the direct sum of the strong topologies 
j8(E« , E«) (this is not true for the weak* topologies). In order that 
E or F be semi-reflexive (respectively reflexive, or a Montel space) it 
is necessary and sufficient that each of the Ea be semi-reflexive (re
spectively reflexive, a Montel space). 

9. (LE)-spaces, bornological spaces and the closed graph theorem. 
Another important instance of inductive limit is the case of a strictly 
increasing sequence (En) of subspaces of a vector space E, such that 
E is the union of the Ew; each En is given a locally convex topology 
13n, such that 13n induces ^5w-i on En~i. The space E, with the induc
tive limit topology 13 of the ^3W (for the inclusion maps) is called the 
strict inductive limit of the En', 15 induces 15n on each Ew, and if each 
En is closed in E»+i, E n is closed in E ; moreover, in this last case, E 
is Hausdorff if the En are, and bounded sets in E are those which are 
contained in some Ew and bounded in E n ; E is never metrizable nor a 
Baire space [13]. Always in the case in which En is closed in Ew+i, E 
is complete (respectively semi-reflexive, reflexive, a Montel space) if 
and only if each En has the same property [41 ]. 

The most interesting case is that in which the En are (E)-spaces; 
E is then called an (LF)-space [13]; many functional spaces are of 
this type, in particular, the space (D) of Schwartz. Unfortunately, 
these spaces fail in general to possess many of the nice properties 
of (E)-spaces; for instance, a closed subspace F of an (LE)-space 
E is not necessarily an (LE)-space, nor is the quotient E/F neces
sarily an (F) or (LE)-space [20]. 

The third important example of inductive limit consists of spaces 
E which are inductive limits of normed spaces Ea with respect to maps 
ga such that E is the union of the ga(Ea) ; these spaces are called borno
logical [7; 15; 48; 61 ]. Such a space can also be characterized by 
any of the two following properties: (a) any convex, symmetric set 
in E which absorbs (see §3) all bounded subsets of E is a neighbor-



504 J. A. DIEUDONNÉ [November 

hood of 0 in E ; (b) any linear mapping u of E into a locally convex 
space E, which transforms bounded sets into bounded sets, is con
tinuous [48]. Every metrizable locally convex space is bornological 
[48]; every bornological space is a quasi-/-space (see §7), but can 
fail to be a /-space (see §5) ; whether there are /-spaces which are not 
bornological is an unsolved problem, as is also the question whether 
the completion of a bornological space is bornological. The dual of a 
bornological space is strongly complete [7]. The strong dual of an 
(E)-space is bornological if and only if it is a /-space [20 ]. 

An inductive limit of bornological spaces is bornological. A product 
of bornological spaces is bornological if the set of factors has a cardinal 
at most equal to that of the continuum; whether the result extends 
to arbitrary products is an open question, equivalent to a problem of 
Ulam in measure theory [48; 49; 15]. Examples are known of borno
logical spaces having non-bornological closed subspaces [20; 15;6l ] . 

The notion of inductive limit is linked with the most extensive 
generalization which has been given thus far of the closed graph 
theorem of Banach [13; 42; 24]: suppose E is a bornological semi-
complete (see §4) space, and E is defined as the inductive limit of a 
sequence (Ew) of (E)-spaces, relative to a sequence (gn) of linear 
mappings, such that E is the union of the gn(En). Then, if u is a 
linear mapping of E into E such that the graph of u is closed in E X E, 
u is continuous. I t follows from this that any linear continuous map
ping of E onto E is an open homomorphism. 

10. Spaces of bilinear functionals and tensor products. As already 
stressed above (see §4), the study of spaces of operators, and more 
generally of spaces «£(E, E), is a central theme in modern functional 
analysis: well known examples are the theory of rings of operators in 
Hubert space, and the more recent theory of kernels developed by 
L. Schwartz in connection with his theory of distributions [57]. For 
deeper results on spaces «£(E, E), a knowledge of their duality theory 
is of great value; this is the main starting point of the very recent 
theory of topological tensor products, which we are now going to 
consider. 

Let E and E be /-spaces, E ' and E' the duals of E and E, and write 
Esy El for the spaces E, E ' with the weak topologies a(E, E') and 
or(E', E) respectively, and similarly for E and E'. Every continuous 
linear mapping u from E to E is also a continuous linear mapping 
from Es to E«, and conversely, in other words, -£(E, E) = ^ ( E 8 , F8). 
Now, for every x^E and every y'ÇzF', consider the number v{x> yr) 
= {u(x), y')\ this is a bilinear functional on EXF', and it is continu-
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ous with respect to each variable, when considered as defined over 
the topological space Es X 7*7 ; conversely, any such separately con
tinuous bilinear functional over E8XFi has the form (x, y') 
—>{u(x), y')9 where u is a well determined element of •£(£, F)\ in 
other words, there is an algebraic isomorphism between the space 
o£(E, F) and the space 33(7£s, Fl) of separately continuous bilinear 
functional over Es X Fi. 

Changing slightly our point of view, let us now consider generally 
the space 33(E, F) of bilinear separately continuous functionals over 
a product E X F of two locally convex spaces. We observe that this 
space contains, of course, the subspace 43(72, F) of all continuous 
bilinear functionals (with respect to both variables), but is not gen
erally identical with it (although it is well known that the two 
spaces are identical if E and F are (70-spaces). We also observe that 
33(72, F) and 93(72s, FS) are obviously identical, which provides the 
link with the preceding considerations. 

Now, looking for a duality theory adapted to 58(72, F) (or ©(22, F)) 
means that we are trying to determine a space such that the bilinear 
functionals over EX F become linear functionals over that space. In 
pure algebra, this has been achieved long ago by the consideration of 
the tensor product (or Kronecker product) E ® F of the two spaces [2 ] ; 
this is defined as the set of all formal (finite) linear combinations 
2^» Xi®yi (xiQE, yiÇiF), where identifications have been performed, 
such that (x+x')®(y+y') is identified with x®y+x' ®y-\-x®y' 
+x'®y', and (ax)®(fiy) with afi(x®y). Linear forms on that space 
are exactly in one-to-one correspondence with all bilinear forms on 
EXF, the correspondence associating to the linear form u the bi
linear form (x, y)—*u(x®y). When E and F are locally convex spaces, 
we can still consider the algebraic tensor product E®F, and S3 (£, F) 
(or 43(22, F)) can then be identified with a space of linear forms on 
E®F; but we want to define E®F as a topological vector space in 
such a way that the elements of 33(72, 70 (or 43(72, F)) will become 
continuous over E®F. This problem was first successfully attacked by 
R. Schatten when E and F are Banach spaces [55]; it has now been 
extensively treated in the general case by A. Grothendieck [23; 24]. 
I t turns out that, even in the case of Banach spaces, there are several 
"natural" solutions. 

Let us suppose, for simplicity's sake, that E and F are complete 
/-spaces. The spaces E®F and 43(72, 70 are put in a natural duality 
by the "scalar product" (x®yt u) = u(x, y) as seen above. If we re
call that, in the dual of a locally convex space G, polars of the 
neighborhoods of 0 in G are equicontinuous sets (see §6), we have a 
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natural way of defining neighborhoods of 0 in E®F: for each equi-
continuous set M of continuous bilinear functionals, consider the set 
M° in E®F consisting of all z=y£i Xi®ji such that | (0, u)\ 
= I ]C* u(xi> yù\ = 1 for all uÇzM. K fundamental system of neigh
borhoods of 0 in E ® F will then be taken as consisting of all sets of 
the form M°. There are two equivalent definitions : (a) take a convex 
neighborhood V of 0 in E, a convex neighborhood W of 0 in F, and 
consider the convex hull T(V®W) of all elements x®y, where x £ F 
and yÇzW; these sets form a fundamental system of neighborhoods of 
0; (b) equivalently, take a semi-norm a o n £ , a semi-norm /3 on F, 
and define, for zÇzE®F, 

y(z) = g.l.b. f Ea(*)|8(y<)) 

the g.l.b. being taken over all possible representations of z in the form 
X)* xi®yi\ then the semi-norms 7 define the topology of E®F. For 
that topology, linear continuous functionals on E®F are exactly 
identified with the bilinear continuous functionals on EXF; more 
generally, for any locally convex space H, the space j£(E®Fi H) is 
identified with the space of continuous bilinear mappings of EXF 
into H. 

The preceding operations, however, still give in general "too small" 
a vector space for the tensor product. This is best understood when 
one of the spaces E, F is a space of numerical f unctions over some set 
S; it is then easily verified that the space E®F (without topology) 
can be identified with the set of mappings /—>J^< Xi(t)yi (finite sum), 
where # i £ E and yiG.F; these are mappings of finite rank} and it is 
clear that interesting results will be obtained only if we enlarge that 
functional space by adding to it the "limits'' of its elements in some 
sense. This leads to the final step in the definition of the tensor 
product: we consider the space E®F with the topology defined 
above and take its completion E®iF, which is then called the projec
tive tensor product of E and F. 

Similar definitions may be given when 43 (E, F) is replaced by 
93(E, F) ; we take here as sets MC93(E, F) those which are separately 
equicontinuous (that is, for every # £ . £ , the set of linear functionals 
y-+u(x, y) is equicontinuous when u runs through M, and the same 
condition holds when E and F are exchanged). The polar sets M° 
then define a new topology on E®F, and the completion of E ® F for 
that topology is a second tensor product, written E®QF and called the 
inductive tensor product. It is identical to E®iF when both E and F 
are (F)-spaces. Continuous linear mappings of E®QF into a com-
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pie te locally convex space H are here identified with the separately 
continuous bilinear mappings of E X F into H. 

A third "natural" topology is finally defined in the following way. 
Let us consider the duals E' and F' of E and F, and their tensor prod
uct E'®F'\ this space (without topology) can be identified in a 
natural way with a subspace of <£(£, F)> by associating to the tensor 
product x'®y' the bilinear form (x, y)—*(x, xf)(y, y') {product in 
the classical sense of x' and yf). We can now take as sets M in the 
general method outlined above the products P®Q (set of all xf®y', 
where # ' £ P , y 'GQ), where P and Q are equicontinuous subsets of Ef 

and F' respectively. The completion of E ® F under this topology is 
called the biprojective tensor product of E and F, and written E®2F. 

Of these three topologies on E®F, the biprojective is the coarsest, 
the inductive the finest, and the projective is between these two ex
tremes. Hence the "largest" tensor product is the biprojective one, 
and the "smallest" the inductive one, the projective tensor product 
being "intermediate." 

11. Properties of the tensor products [24]. We shall only be con
cerned with the projective and biprojective tensor products. A "con
crete" interpretation can be given of these products in several im
portant cases. For instance, if E and F are (F)-spaces, then E®iF 
and E®2F are (JF)-spaces; the elements of E®iF can be described as 
sums of convergent series X ^ \kXk®yk, where X^-o 1̂ *1 'ls finite, 
and the sequences (xk) and (yk) tend to 0 in E and F respectively. 
The space l*®iE can be identified with the space of absolutely con-
ver gent series in E (that is, series Yln~o xn such that for every semi-
norm p on E y the series 2»T-o P(xn) is absolutely convergent), 
whereas the space ll®2E can be identified with the space of all 
unconditionally convergent series in E. Similarly, if C(K) is the space 
of real continuous functions on a compact space K, C{K)®2E can 
be identified with the space of continuous mappings from K to £ , 
with the topology of uniform convergence. 

Other important interpretations of tensor products stem from the 
initial remark of §10. Every element ]T)* xl ®yi of the (algebraic) 
tensor product Ef®F can be identified with the linear mapping 
x—» ]T)» (x, xi )yi of E into F; in other words, E' ®F can be considered 
as the space of all linear continuous mappings of finite rank of E 
into F. The tensor products E' ®iF and E' ®2F (where Ef is given its 
strong topology) will, in the most important cases, be identified with 
spaces of linear mappings of E into J!7 which are "limits" in some sense 
of mappings of finite rank. For instance, if E is a reflexive Banach 
space with a basis, Ef ®2E will be identified with the space of com-
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pletely continuous mappings of E into itself, whereas, in general, 
E' ®\E will be a proper subspace of that space (for instance, when 
£ is a Hilbert space, a completely continuous hermitian operator will 
belong to E' ®\E only if the series of its eigenvalues is absolutely con
vergent [14; 55]). The dual of E'®2E is then identified with E®XE'\ 
hence, its bidual with « ( £ ' , E) [l4J. 

This shows that in general the dual of E®2F will not be equal to 
43(J5, F). I t is much smaller, and can be determined directly from the 
duals Ef, F' in the following explicit way. The (algebraic) spaces 
E®F and E'®F' are in a natural duality, defined by (x®y, x''®y') 
= (x, x')(y, yr)\ the topology of E®2F is such that xf ®y' can be ex
tended by continuity to a continuous linear functional on E®2F. 
Now, all continuous linear functionals on E®2F can be obtained 
from these "elementary" ones by a process of integration: more pre
cisely, any such functional can be written 

u —> I (u, xf ® y')dti(x', y') 

where /* is a positive Radon measure defined on a product PXQ of 
an equicontinuous (hence compact) subset P of E' and an equicon-
tinuous subset Q of F'. This, applied to E' ®2F} leads to important 
classes of linear mappings of E into Ff which have many useful 
properties. 

12. Nuclear spaces [24]. Comparison of the two tensor products 
E®iF and E®2F has led A. Grothendieck to the investigation of a 
new class of locally convex spaces, namely those spaces E for which 
E®iF and E®2F are (topologically) identical for every locally con
vex space F. Such spaces are called nuclear \ they possess many re
markable properties, which make them closer to finite-dimensional 
spaces than any other known category of infinite-dimensional spaces. 

A space is nuclear if and only if its completion is nuclear ; we shall 
therefore consider only complete nuclear spaces. In such a space, a 
bounded set is always relatively compact, hence the space is always 
semi-reflexive (§6), but it need not be a /-space; if it is a /-space, 
it is of course a Montel space; moreover, if it is an (jF)-space, its 
(strong) dual is also a nuclear space. A closed subspace F of a nuclear 
space E is nuclear and so is the quotient space E/F. Any projective 
limit of nuclear spaces (§8) is nuclear; so is the inductive limit of a 
sequence of nuclear spaces. 

If both E and F are (complete) nuclear spaces, so is their tensor 
product E®iF = E®2F: moreover, E®iF can be identified with the 
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whole space $8(E', F') of separately continuous bilinear functionals 
on E'XF'. As seen above, the dual oîE®2Fis then <B(E, F) (hence, all 
continuous bilinear functionals on E X F have the "integral" represen
tation given a t the end of §11) ; moreover, if E and F are (F)-spaces, 
<B(E, 70 can be identified (topologically) with the tensor product 
E' ®\F' of the (strong) duals. In the same case, the space <£(£, 70, 
with the topology of bounded convergence (§4) is nuclear, and its 
strong dual is also nuclear. 

The (70 -spaces which are nuclear spaces can be characterized by 
the following property: they are the only (70-spaces in which every 
unconditionally convergent series is also absolutely convergent: for 
Banach spaces, this gives of course, in particular, an entirely new 
proof of the Dvoretzky-Rogers theorem [16]. 

The importance of nuclear spaces lies chiefly in the fact that most 
spaces which occur in the theory of distributions, or in the theory of 
analytic functions, are nuclear spaces (for instance, the spaces 
(D), (DO, (£), (60 of Schwartz [56; 57], as well as the space 3C(G) 
of holomorphic functions in a domain, with the topology of compact 
convergence (compact-open topology) [58; 8; 45; 46; 25]). The 
simple properties of nuclear spaces will undoubtedly prove very use
ful in later developments of these theories. 
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