Hierarchies of number-theoretic predicates
HTML articles powered by AMS MathViewer
- by S. C. Kleene PDF
- Bull. Amer. Math. Soc. 61 (1955), 193-213
References
-
1. L. E. J. Brouwer, Beweis, dass jede volle Funktion gleichmässig stetig ist, Neder. Akad. Wetensch. vol. 27 (1924) pp. 189-193.
- L. E. J. Brouwer, Über Definitionsbereiche von- Funktionen, Math. Ann. 97 (1927), no. 1, 60–75 (German). MR 1512354, DOI 10.1007/BF01447860
- Alonzo Church, An Unsolvable Problem of Elementary Number Theory, Amer. J. Math. 58 (1936), no. 2, 345–363. MR 1507159, DOI 10.2307/2371045 4. A. Church, The constructive second number class, Bull. Amer. Math. Soc. vol. 44 (1938) pp. 224-232. 5. A. Church and S. C. Kleene, Formal definitions in the theory of ordinal numbers, Fund. Math. vol. 28 (1936) pp. 11-21. 6. M. Davis, On the theory of recursive unsolvability, Thesis, Princeton, 1950. 7. M. Davis, Relatively recursive functions and the extended Kleene hierarchy, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, Providence, American Mathematical Society, 1952, vol. 1, p. 723.
- Kurt Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monatsh. Math. Phys. 38 (1931), no. 1, 173–198 (German). MR 1549910, DOI 10.1007/BF01700692 9. K. Gödel, On undecidable propositions of formal mathematical systems, Notes on lectures at the Institute for Advanced Study, mimeographed, Princeton, 1934, 30 pp.
- S. C. Kleene, General recursive functions of natural numbers, Math. Ann. 112 (1936), no. 1, 727–742. MR 1513071, DOI 10.1007/BF01565439 11. S. C. Kleene, On notation for ordinal numbers, J. Symbolic Logic vol. 3 (1938) pp. 150-155.
- S. C. Kleene, Recursive predicates and quantifiers, Trans. Amer. Math. Soc. 53 (1943), 41–73. MR 7371, DOI 10.1090/S0002-9947-1943-0007371-8
- S. C. Kleene, On the forms of the predicates in the theory of constructive ordinals, Amer. J. Math. 66 (1944), 41–58. MR 9757, DOI 10.2307/2371894
- S. C. Kleene, A symmetric form of Gödel’s theorem, Nederl. Akad. Wetensch., Proc. 53 (1950), 800–802 = Indagationes Math. 12, 244–246 (1950). MR 36191
- S. C. Kleene, Recursive functions and intuitionistic mathematics, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 1, Amer. Math. Soc., Providence, R.I., 1952, pp. 679–685. MR 0044468
- Stephen Cole Kleene, Introduction to metamathematics, D. Van Nostrand Co., Inc., New York, N. Y., 1952. MR 0051790
- S. C. Kleene, Arithmetical predicates and function quantifiers, Trans. Amer. Math. Soc. 79 (1955), 312–340. MR 70594, DOI 10.1090/S0002-9947-1955-0070594-4
- S. C. Kleene, On the forms of the predicates in the theory of constructive ordinals, Amer. J. Math. 66 (1944), 41–58. MR 9757, DOI 10.2307/2371894
- S. C. Kleene and Emil L. Post, The upper semi-lattice of degrees of recursive unsolvability, Ann. of Math. (2) 59 (1954), 379–407. MR 61078, DOI 10.2307/1969708
- G. Kreisel, On the interpretation of non-finitist proofs. I, J. Symbolic Logic 16 (1951), 241–267. MR 49135, DOI 10.2307/2267908
- G. Kreisel, A variant to Hilbert’s theory of the foundations of arithmetic, British J. Philos. Sci. 4 (1953), 107–129 errata and corrigenda, 357 (1954). MR 60442, DOI 10.1093/bjps/IV.14.107
- Andrzej Mostowski, On definable sets of positive integers, Fund. Math. 34 (1947), 81–112. MR 21923, DOI 10.4064/fm-34-1-81-112 23. A. Mostowski, A classification of logical systems, Studia Philosophica vol. 4 (1951) pp. 237-274. 24. E. L. Post, Finite combinatory processes—formulation I, J. Symbolic Logic vol. 1 (1936) pp. 103-105.
- Emil L. Post, Recursively enumerable sets of positive integers and their decision problems, Bull. Amer. Math. Soc. 50 (1944), 284–316. MR 10514, DOI 10.1090/S0002-9904-1944-08111-1 26. E. L. Post, Degrees of recursive unsolvability, Bull. Amer. Math. Soc. Abstract 54-7-269. 27. T. Skolem, Über die Zurückführbarkeit einiger durch Rekursionen definierten Relationen auf "arithmetische," Acta Sci. Math. Szeged vol. 8 (1936-37) pp. 73-88.
- Clifford Spector, Recursive well-orderings, J. Symbolic Logic 20 (1955), 151–163. MR 74347, DOI 10.2307/2266902
- Alfred Tarski, Einige Betrachtungen über die Begriffe der $\omega$-Widerspruchsfreiheit und der $\omega$-Vollständigkeit, Monatsh. Math. Phys. 40 (1933), no. 1, 97–112 (German). MR 1550192, DOI 10.1007/BF01708855 30. A. M. Turing, On computable numbers, with an application to the Entscheidungs-problem, Proc. London Math. Soc. (2) vol. 42 (1936-37) pp. 230-265. A correction, ibid. vol. 43 (1937) pp. 544-546. 31. A. M. Turing, Systems of logic based on ordinals, Proc. London Math. Soc. (2) vol. 45 (1939) pp. 161-228.
Additional Information
- Journal: Bull. Amer. Math. Soc. 61 (1955), 193-213
- DOI: https://doi.org/10.1090/S0002-9904-1955-09896-3
- MathSciNet review: 0070593