Hierarchies of number-theoretic predicates
Author:
S. C. Kleene
Journal:
Bull. Amer. Math. Soc. 61 (1955), 193-213
DOI:
https://doi.org/10.1090/S0002-9904-1955-09896-3
MathSciNet review:
0070593
Full-text PDF Free Access
References | Additional Information
- 1. L. E. J. Brouwer, Beweis, dass jede volle Funktion gleichmässig stetig ist, Neder. Akad. Wetensch. vol. 27 (1924) pp. 189-193.
- 2. L. E. J. Brouwer, Über Definitionsbereiche von- Funktionen, Math. Ann. 97 (1927), no. 1, 60–75 (German). MR 1512354, https://doi.org/10.1007/BF01447860
- 3. Alonzo Church, An Unsolvable Problem of Elementary Number Theory, Amer. J. Math. 58 (1936), no. 2, 345–363. MR 1507159, https://doi.org/10.2307/2371045
- 4. A. Church, The constructive second number class, Bull. Amer. Math. Soc. vol. 44 (1938) pp. 224-232.
- 5. A. Church and S. C. Kleene, Formal definitions in the theory of ordinal numbers, Fund. Math. vol. 28 (1936) pp. 11-21.
- 6. M. Davis, On the theory of recursive unsolvability, Thesis, Princeton, 1950.
- 7. M. Davis, Relatively recursive functions and the extended Kleene hierarchy, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, Providence, American Mathematical Society, 1952, vol. 1, p. 723.
- 8. Kurt Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monatsh. Math. Phys. 38 (1931), no. 1, 173–198 (German). MR 1549910, https://doi.org/10.1007/BF01700692
- 9. K. Gödel, On undecidable propositions of formal mathematical systems, Notes on lectures at the Institute for Advanced Study, mimeographed, Princeton, 1934, 30 pp.
- 10. S. C. Kleene, General recursive functions of natural numbers, Math. Ann. 112 (1936), no. 1, 727–742. MR 1513071, https://doi.org/10.1007/BF01565439
- 11. S. C. Kleene, On notation for ordinal numbers, J. Symbolic Logic vol. 3 (1938) pp. 150-155.
- 12. S. C. Kleene, Recursive predicates and quantifiers, Trans. Amer. Math. Soc. 53 (1943), 41–73. MR 7371, https://doi.org/10.1090/S0002-9947-1943-0007371-8
- 13. S. C. Kleene, On the forms of the predicates in the theory of constructive ordinals, Amer. J. Math. 66 (1944), 41–58. MR 9757, https://doi.org/10.2307/2371894
- 14. S. C. Kleene, A symmetric form of Gödel’s theorem, Nederl. Akad. Wetensch., Proc. 53 (1950), 800–802 = Indagationes Math. 12, 244–246 (1950). MR 36191
- 15. S. C. Kleene, Recursive functions and intuitionistic mathematics, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 1, Amer. Math. Soc., Providence, R. I., 1952, pp. 679–685. MR 0044468
- 16. Stephen Cole Kleene, Introduction to metamathematics, D. Van Nostrand Co., Inc., New York, N. Y., 1952. MR 0051790
- 17. S. C. Kleene, Arithmetical predicates and function quantifiers, Trans. Amer. Math. Soc. 79 (1955), 312–340. MR 70594, https://doi.org/10.1090/S0002-9947-1955-0070594-4
- 18. S. C. Kleene, On the forms of the predicates in the theory of constructive ordinals, Amer. J. Math. 66 (1944), 41–58. MR 9757, https://doi.org/10.2307/2371894
- 19. S. C. Kleene and Emil L. Post, The upper semi-lattice of degrees of recursive unsolvability, Ann. of Math. (2) 59 (1954), 379–407. MR 61078, https://doi.org/10.2307/1969708
- 20. G. Kreisel, On the interpretation of non-finitist proofs. I, J. Symbolic Logic 16 (1951), 241–267. MR 49135, https://doi.org/10.2307/2267908
- 21. G. Kreisel, A variant to Hilbert’s theory of the foundations of arithmetic, British J. Philos. Sci. 4 (1953), 107–129 errata and corrigenda, 357 (1954). MR 60442, https://doi.org/10.1093/bjps/IV.14.107
- 22. Andrzej Mostowski, On definable sets of positive integers, Fund. Math. 34 (1947), 81–112. MR 21923, https://doi.org/10.4064/fm-34-1-81-112
- 23. A. Mostowski, A classification of logical systems, Studia Philosophica vol. 4 (1951) pp. 237-274.
- 24. E. L. Post, Finite combinatory processes—formulation I, J. Symbolic Logic vol. 1 (1936) pp. 103-105.
- 25. Emil L. Post, Recursively enumerable sets of positive integers and their decision problems, Bull. Amer. Math. Soc. 50 (1944), 284–316. MR 10514, https://doi.org/10.1090/S0002-9904-1944-08111-1
- 26. E. L. Post, Degrees of recursive unsolvability, Bull. Amer. Math. Soc. Abstract 54-7-269.
- 27. T. Skolem, Über die Zurückführbarkeit einiger durch Rekursionen definierten Relationen auf "arithmetische," Acta Sci. Math. Szeged vol. 8 (1936-37) pp. 73-88.
- 28. Clifford Spector, Recursive well-orderings, J. Symbolic Logic 20 (1955), 151–163. MR 74347, https://doi.org/10.2307/2266902
- 29. Alfred Tarski, Einige Betrachtungen über die Begriffe der 𝜔-Widerspruchsfreiheit und der 𝜔-Vollständigkeit, Monatsh. Math. Phys. 40 (1933), no. 1, 97–112 (German). MR 1550192, https://doi.org/10.1007/BF01708855
- 30. A. M. Turing, On computable numbers, with an application to the Entscheidungs-problem, Proc. London Math. Soc. (2) vol. 42 (1936-37) pp. 230-265. A correction, ibid. vol. 43 (1937) pp. 544-546.
- 31. A. M. Turing, Systems of logic based on ordinals, Proc. London Math. Soc. (2) vol. 45 (1939) pp. 161-228.
Additional Information
DOI:
https://doi.org/10.1090/S0002-9904-1955-09896-3