of its words; it should be both readable and speakable as well as printable. Thus symbols such as ‘…,’ ‘…,’ or end-tags like ‘q.e.d.,’ ‘q.e.f.’ are best left behind in the schoolroom. What they say can be as well said in plain English. When ‘with respect to’ grows tedious by repetition, it need not be cut to ‘w.r.t.,’ which is not current English. The preposition ‘in’ will generally serve.”

I recommend this part of the Oxford book especially to all of us who feel that doing research is so much more fun (and claim that it is so much more important) than writing it down carefully for others to comprehend.

Both books contain long lists of available characters; there is a wealth of choice available for anyone who is imaginative enough to do something besides varying a few letters by covering them with hats of various shapes. The Oxford University Press is, however, not an entirely safe guide for authors, since, for example, it is willing to allow, and indeed has allowed, a Chinese character as a mathematical symbol. Other, less well-equipped, presses would disagree; and in general it seems that notations should, if possible, be chosen so that they can be reproduced by all reasonable printers.

R. P. Boas, Jr.

Brief Mention

For reviews of earlier editions (in German) see this Bulletin vol. 33, p. 251; vol. 34, p. 672; vol. 40, p. 370; vol. 41, p. 476; vol. 44, p. 178.

This volume contains 15 papers read at a conference held in October, 1952.

For vol. 1 cf. this Bulletin vol. 60, p. 288. Vol. 2 contains papers on
functions of a real variable and expansions in series, the Dini-Neu-
mann problem, and analytic functions.

Table of the gamma function for complex arguments. (National Bureau
of Standards Applied Mathematics Series, no. 34.) Washington,

The natural logarithm of $\Gamma(x+iy)$ is tabulated for $x=0(.1)10,$
$y=0(.1)10,$ to 12 decimals.

Table of sine and cosine integrals for arguments from 10 to 100. (Na­
tional Bureau of Standards Applied Mathematics Series, no. 32.)

This is a reissue of Table 13 of the Mathematical Tables Project
(this Bulletin vol. 49, p. 32).

Lineare Operatoren im Hilbertschen Raum. By W. Schmeidler.
Stuttgart, Teubner, 1954. 6+89 pp. 7.80 DM.

This little book is intended as an introduction to the theory of
Hilbert space and linear operators on Hilbert space. It is essentially
self-contained and, although the text contains only pure mathe­
matics, is clearly motivated by applications. The approach is classical.
Fundamental theorems for Hilbert space are proved first for the
space l_2 of sequences and then extended by the representation theo­
rem to abstract Hilbert space, which by definition is separable and
infinite dimensional. The book is divided into three parts: I, The
Hilbert space \mathcal{H}. II, Linear operators in \mathcal{H}. III, Spectral theory.
Part II emphasizes the completely continuous operators and con­
tains, among other things, the Schmidt normal form and the Fred­
holm theory for such operators. Part III is mainly concerned with the
spectral theorem. All linear operators are bounded until the end of
Part III where the spectral theorem is extended to unbounded
Hermitian operators. Each of the parts concludes with a section on
exercises, examples, and applications which serve to broaden con­
siderably the scope of the book.

*C. E. Rickart

Erratum

In the review of *Tables of binomial coefficients*, published by the
Cambridge University Press [this Bulletin vol. 61 (1955) p. 91], the
price was incorrectly given as $5.50. The price is $6.50.