On the characters of a semisimple Lie group
HTML articles powered by AMS MathViewer
- by Harish-Chandra PDF
- Bull. Amer. Math. Soc. 61 (1955), 389-396
References
- Lars Gårding, Dirichlet’s problem for linear elliptic partial differential equations, Math. Scand. 1 (1953), 55–72. MR 64979, DOI 10.7146/math.scand.a-10364
- Harish-Chandra, On representations of Lie algebras, Ann. of Math. (2) 50 (1949), 900–915. MR 30945, DOI 10.2307/1969586
- Harish-Chandra, On some applications of the universal enveloping algebra of a semisimple Lie algebra, Trans. Amer. Math. Soc. 70 (1951), 28–96. MR 44515, DOI 10.1090/S0002-9947-1951-0044515-0
- Harish-Chandra, Representations of semisimple Lie groups. III. Characters, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 366–369. MR 42423, DOI 10.1073/pnas.37.6.366
- Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185–243. MR 56610, DOI 10.1090/S0002-9947-1953-0056610-2
- Harish-Chandra, Representations of semisimple Lie groups. III, Trans. Amer. Math. Soc. 76 (1954), 234–253. MR 62747, DOI 10.1090/S0002-9947-1954-0062747-5
- Harish-Chandra, The Plancherel formula for complex semisimple Lie groups, Trans. Amer. Math. Soc. 76 (1954), 485–528. MR 63376, DOI 10.1090/S0002-9947-1954-0063376-X
- Fritz John, The fundamental solution of linear elliptic differential equations with analytic coefficients, Comm. Pure Appl. Math. 3 (1950), 273–304. MR 42030, DOI 10.1002/cpa.3160030305
- Fritz John, General properties of solutions of linear elliptic partial differential equations, Proceedings of the Symposium on Spectral Theory and Differential Problems, Oklahoma Agricultural and Mechanical College, Stillwater, Okla., 1951, pp. 113–175. MR 0043990
- L. Schwartz, Théorie des distributions. Tome I, Publ. Inst. Math. Univ. Strasbourg, vol. 9, Hermann & Cie, Paris, 1950 (French). MR 0035918
- I. E. Segal, Hypermaximality of certain operators on Lie groups, Proc. Amer. Math. Soc. 3 (1952), 13–15. MR 51240, DOI 10.1090/S0002-9939-1952-0051240-5 6. H. Weyl, Math. Zeit. vol. 24 (1925) pp. 328-395. 7. I. M. Gelfand and M. A. Naĭmark, Trudi Mat. Inst. Steklova vol. 36 (1950)
Additional Information
- Journal: Bull. Amer. Math. Soc. 61 (1955), 389-396
- DOI: https://doi.org/10.1090/S0002-9904-1955-09935-X
- MathSciNet review: 0071715