Inequalities of critical point theory
Author:
Everett Pitcher
Journal:
Bull. Amer. Math. Soc. 64 (1958), 1-30
DOI:
https://doi.org/10.1090/S0002-9904-1958-10137-8
MathSciNet review:
0096153
Full-text PDF Free Access
References | Additional Information
- Raoul Bott, Nondegenerate critical manifolds, Ann. of Math. (2) 60 (1954), 248–261. MR 64399, DOI https://doi.org/10.2307/1969631
- D. G. Bourgin, Arrays of compact pairs, Ann. Mat. Pura Appl. (4) 40 (1955), 211–221. MR 83678, DOI https://doi.org/10.1007/BF02416534
- René Deheuvels, Topologie d’une fonctionnelle, Ann. of Math. (2) 61 (1955), 13–72 (French). MR 69488, DOI https://doi.org/10.2307/1969619 E-S1 S. Eilenberg and N. Steenrod, Foundations of algebraic topologyPrinceton Mathematical Series, vol. 15, Princeton, 1952. 30 J1 N. Jacobson, Lectures in abstract algebraI and II, New York, van Nostrand, 1951 and 1953.
- J. L. Kelley and Everett Pitcher, Exact homomorphism sequences in homology theory, Ann. of Math. (2) 48 (1947), 682–709. MR 21315, DOI https://doi.org/10.2307/1969135 L-S1 L. Lusternik and L. Schnirelmann, Methodes topologiques dans les problemes variationnelsActualités Scientifiques et Industrielles, no. 188, Paris, Hermann, 1934.
- Anthony P. Morse, The behavior of a function on its critical set, Ann. of Math. (2) 40 (1939), no. 1, 62–70. MR 1503449, DOI https://doi.org/10.2307/1968544
- Marston Morse, The calculus of variations in the large, American Mathematical Society Colloquium Publications, vol. 18, American Mathematical Society, Providence, RI, 1996. Reprint of the 1932 original. MR 1451874
- Marston Morse, Functional topology and abstract variational theory, Ann. of Math. (2) 38 (1937), no. 2, 386–449. MR 1503341, DOI https://doi.org/10.2307/1968559 P1 E. Pitcher, A class of group extensionsBull. Amer. Math. Soc. Abstract 59-6-585. P2 E. Pitcher, Chain groups and critical point inequalitiesAbstract, 59-6-714. S-T H. Seifert and W. Threlfall, Variationsrechnung im GrossenLeipzig and Berlin, Teubner, 1938.
- Hassler Whitney, A function not constant on a connected set of critical points, Duke Math. J. 1 (1935), no. 4, 514–517. MR 1545896, DOI https://doi.org/10.1215/S0012-7094-35-00138-7