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In John von Neumann's death on February 8, 1957, the world of 
mathematics lost a most original, penetrating, and versatile mind. 
Science suffered the loss of a universal intellect and a unique inter
preter of mathematics, who could bring the latest (and develop latent) 
applications of its methods to bear on problems of physics, astron
omy, biology, and the new technology. Many eminent voices have 
already described and praised his contributions. I t is my aim to add 
here a brief account of his life and of his work from a background of 
personal acquaintance and friendship extending over a period of 25 
years. 

* * * 

John von Neumann (Johnny, as he was universally known in this 
country), the eldest of three boys, was born on December 28, 1903, 
in Budapest, Hungary, at that time part of the Austro-Hungarian 
empire. His family was well-to-do; his father, Max von Neumann, 
was a banker. As a small child, he was educated privately. In 1914, 
at the outbreak of the First World War, he was ten years old and 
entered the gymnasium. 

Budapest, in the period of the two decades around the First World 
War, proved to be an exceptionally fertile breeding ground for scien
tific talent. I t will be left to historians of science to discover and ex
plain the conditions which catalyzed the emergence of so many bril
liant individuals (—their names abound in the annals of mathe
matics and physics of the present time). Johnny was probably the 
most brilliant star in this constellation of scientists. When asked 
about his own opinion on what contributed to this statistically un
likely phenomenon, he would say that it was a coincidence of some 
cultural factors which he could not make precise: an external pres
sure on the whole society of this part of Central Europe, a subcon
scious feeling of extreme insecurity in individuals, and the necessity 
of producing the unusual or facing extinction. The First World War 
had shattered the existing economic and social patterns. Budapest, 
formerly the second capital of the Austro-Hungarian empire, was 
now the principal town of a small country. I t became obvious to 
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many scientists that they would have to emigrate and find a living 
elsewhere in less restricted and provincial surroundings. 

According to Fellner,1 who was a classmate of his, Johnny's unusual 
abilities came to the attention of an early teacher (Laslo Ratz). He 
expressed to Johnny's father the opinion that it would be nonsensical 
to teach Johnny school mathematics in the conventional way, and 
they agreed that he should be privately coached in mathematics. 
Thus, under the guidance of Professor Kürschak and the tutoring 
of Fekete, then an assistant at the University of Budapest, he learned 
about the problems of mathematics. When he passed his "matura" in 
1921, he was already recognized a professional mathematician. His 
first paper, a note with Fekete, was composed while he was not yet 
18. During the next four years, Johnny was registered at the Uni
versity of Budapest as a student of mathematics, but he spent most 
of his time in Zurich at the Eidgenössische Technische Hochschule, 
where he obtained an undergraduate degree of "Diplomingenieur in 
Chemie," and in Berlin. He would appear at the end of each semester 
at the University of Budapest to pass his course examinations (with
out having attended the courses, which was somewhat irregular). 
He received his doctorate in mathematics in Budapest at about the 
same time as his chemistry degree in Zurich. While in Zurich, he 
spent much of his spare time working on mathematical problems, 
writing for publication, and corresponding with mathematicians. He 
had contacts with Weyl and Polya, both of whom were in Zurich. 
At one time, Weyl left Zurich for a short period, and Johnny took 
over his course for that period. 

It should be noted that, on the whole, precocity in original mathe
matical work was not uncommon in Europe. Compared to the United 
States, there seems to be a difference of at least two or three years in 
specialized education, due perhaps to a more intensive schooling sys
tem during the gymnasium and college years. However, Johnny was 
exceptional even among the youthful prodigies. His original work 
began even in his student days, and in 1927, he became a Privât 
Dozent at the University of Berlin. He held this position for three 
years until 1929, and during that time, became well-known to the 
mathematicians of the world through his publications in set theory, 
algebra, and quantum theory. I remember that in 1927, when he 
came to Lwów (in Poland) to attend a congress of mathematicians, 
his work in foundations of mathematics and set theory was already 
famous. This was already mentioned to us, a group of students, as 
an example of the work of a youthful genius. 

1 This information was communicated by Fellner in a letter recalling Johnny's 
early studies. 
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In 1929, he transferred to the University of Hamburg, also as a 
Privat-Dozent, and in 1930, he came to this country for the first 
time as a visiting lecturer at Princeton University. I remember 
Johnny telling me that even though the number of existing and pro
spective vacancies in German universities was extremely small, most 
of the two or three score Dozents counted on a professorship in the 
near future. With his typically rational approach, Johnny computed 
that the expected number of professorial appointments "within three 
years was three, the number of Dozents was 40 ! He also felt that the 
coming political events would make intellectual work very difficult. 

He accepted a visiting professorship at Princeton in 1930, lectur
ing for part of the academic year and returning to Europe in the 
summers. He became a permanent professor at the University in 
1931 and held this position until 1933 when he was invited to join 
the Institute for Advanced Study as a professor, the youngest mem
ber of its permanent faculty. 

Johnny married Marietta Kovesi in 1930. His daughter, Marina, 
was born in Princeton in 1935. In the early years of the Institute, a 
visitor from Europe found a wonderfully informal and yet intense 
scientific atmosphere. The Institute professors had their offices at 
Fine Hall (part of Princeton University), and in the Institute and 
the University departments a galaxy of celebrities was included in 
what quite possibly constituted one of the greatest concentrations of 
brains in mathematics and physics at any time and place. 

It was upon Johnny's invitation that I visited this country for the 
first time at the end of 1935. Professor Veblen and his wife were 
responsible for the pleasant social atmosphere, and I found that the 
von Neumann's (and Alexander's) houses were the scenes of almost 
constant gatherings. These were the years of the depression, but the 
Institute managed to give to a considerable number of both native 
and visiting mathematicians a relatively carefree existence. 

Johnny's first marriage terminated in divorce. In 1938, he re
married during a summer visit to Budapest and brought back to 
Princeton his second wife, Klara Dan. His home continued to be a 
gathering place for scientists. His friends will remember the in
exhaustible hospitality and the atmosphere of intelligence and wit one 
found there. Klari von Neumann later became one of the first coders 
of mathematical problems for electronic computing machines, an art 
to which she brought some of its early skills. 

With the beginning of the war in Europe, Johnny's activities out
side the Institute started to multiply. A list of his positions, organ
izational memberships, etc., will be found at the end of this article. 
This mere enumeration gives an idea of the enormous amount of work 
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Johnny was performing for various scientific projects in and out of 
the government. 

In October, 1954, he was named by presidential appointment as a 
member of the United States Atomic Energy Commission. He left 
Princeton on a leave of absence and discontinued all commitments 
with the exception of the chairmanship of the ICBM Committee. 
Admiral Strauss, chairman of the Commission and a friend of Johnny's 
for many years, suggested this nomination as soon as a vacancy oc
curred. Of Johnny's brief period of active service on the Commission, 
he writes: 

"During the period between the date of his confirmation and the late autumn, 1955, 
Johnny functioned magnificently. He had the invaluable faculty of being able to take the 
most difficult problem, separate it into its components, whereupon everything looked 
brilliantly simple, and all of us wondered why we had not been able to see through to the 
answer as clearly as it was possible for him to do. In this way, he enormously facilitated 
the work of the Atomic Energy Commission" 

Johnny, whose health had always been excellent, began to look 
very fatigued in 1954. In the summer of 1955, the first symptoms of a 
fatal disease were discovered by x-ray examination. A prolonged and 
cruel illness gradually put an end to all his activities. He died at 
Walter Reed Hospital in Washington at the age of 53. 

* * * 

Johnny's friends remember him in his characteristic poses: stand
ing before a blackboard or discussing problems at home. Somehow, 
his gesture, smile, and the expression of the eyes always reflected 
the kind of thought or the nature of the problem under discussion. 
He was of middle size, quite slim as a very young man, then increas
ingly corpulent; moving about in small steps with considerable ran
dom acceleration, but never with great speed. A smile flashed on his 
face whenever a problem exhibited features of a logical or mathe
matical paradox. Quite independently of his liking for abstract wit, 
he had a strong appreciation (one might say almost a hunger) for 
the more earthy type of comedy and humor. 

He seemed to combine in his mind several abilities which, if not 
contradictory, at least seem separately to require such powers of con
centration and memory that one very rarely finds them together in 
one intellect. These are: a feeling for the set-theoretical, formally 
algebraic basis of mathematical thought, the knowledge and under
standing of the substance of classical mathematics in analysis and 
geometry, and a very acute perception of the potentialities of modern 
mathematical methods for the formulation of existing and new prob
lems of theoretical physics. All this is specifically demonstrated by 
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his brilliant and original work which covers a very wide spectrum of 
contemporary scientific thought. 

His conversations with friends on scientific subjects could last for 
hours. There never was a lack of subjects, even when one departed 
from mathematical topics. 

Johnny had a vivid interest in people and delighted in gossip. One 
often had the feeling that in his memory he was making a collection of 
human peculiarities as if preparing a statistical study. He followed 
also the changes brought by the passage of time. When a young man, 
he mentioned to me several tirnes his belief that the primary mathe
matical powers decline after the age of about 26, but that a certain 
more prosaic shrewdness developed by experience manages to com
pensate for this gradual loss, a t least for a time. Later, this limiting 
age was slowly raised. 

He engaged occasionally in conversational evaluations of other 
scientists; he was, on the whole, quite generous in his opinions, but 
often able to damn by faint praise. The expressed judgment was, in 
general, very cautious, and he was certainly unwilling to state any 
final opinions about others: "Let Rhadamantys and Minos . . . 
judge . . . ." Once when asked, he said that he would consider Erhard 
Schmidt and Hermann Weyl among the mathematicians who es
pecially influenced him technically in his early life. 

Johnny was regarded by many as an excellent chairman of com
mittees (this peculiar contemporary activity). He would press 
strongly his technical views, but defer rather easily on personal or 
organizational matters. 

In spite of his great powers and his full consciousness of them, he 
lacked a certain self-confidence, admiring greatly a few mathemati
cians and physicists who possessed qualities which he did not believe 
he himself had in the highest possible degree. The qualities which 
evoked this feeling on his part were, I felt, relatively simple-minded 
powers of intuition of new truths, or the gift for a seemingly irrational 
perception of proofs or formulation of new theorems. 

Quite aware that the criteria of value in mathematical work are, 
to some extent, purely aesthetic, he once expressed an apprehension 
tha t the values put on abstract scientific achievement in our present 
civilization might diminish: "The interests of humanity may change, 
the present curiosities in science may cease, and entirely different 
things may occupy the human mind in the future." One conversation 
centered on the ever accelerating progress of technology and changes 
in the mode of human life, which gives the appearance of approaching 
some essential singularity in the history of the race beyond which 
human affairs, as we know them, could not continue. 
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His friends enjoyed his great sense of humor. Among fellow scien
tists, he could make illuminating, often ironical, comments on his
torical or social phenomena with a mathematician's formulation, 
exhibiting the humor inherent in some statement true only in the 
vacuous set. These often could be appreciated only by mathemati
cians. He certainly did not consider mathematics sacrosanct. I re
member a discussion in Los Alamos, in connection with some physical 
problems where a mathematical argument used the existence of ergod-
ic transformations and fixed points. He remarked with a sudden 
smile, "Modern mathematics can be applied after all! It isn't clear, 
a priori, is it, that it could be so . . . ." 

I would say that his main interest after science was in the study of 
history. His knowledge of ancient history was unbelievably detailed. 
He remembered, for instance, all the anecdotical material in Gibbon's 
Decline and Fall and liked to engage after dinner in historical discus
sions. On a trip south, to a meeting of the American Mathematical 
Society at Duke University, passing near the battlefields of the Civil 
War he amazed us by his familiarity with the minutest features of 
the battles. This encyclopedic knowledge molded his views on the 
course of future events by inducing a sort of analytic continuation. 
I can testify that in his forecasts of political events leading to the 
Second World War and of military events during the war, most of his 
guesses were amazingly correct. After the end of the Second World 
War, however, his apprehensions of an almost immediate subsequent 
calamity, which he considered as extremely likely, proved fortunately 
wrong. There was perhaps an inclination to take a too exclusively 
rational point of view about the cases of historical events. This 
tendency was possibly due to an over-formalized game theory ap
proach. 

Among other accomplishments, Johnny was an excellent linguist. 
He remembered his school Latin and Greek remarkably well. In 
addition to English, he spoke German and French fluently. His lec
tures in this country were well known for their literary quality (with 
very few characteristic mispronunciations which his friends antici
pated joyfully, e.g., "integhers"). During his frequent visits to Los 
Alamos and Santa Fe (New Mexico), he displayed a less perfect 
knowledge of Spanish, and on a trip to Mexico, he tried to make 
himself understood by using "neo-Castilian," a creation of his own 
—English words with an "el" prefix and appropriate Spanish endings. 

Before the war, Johnny spent the summers in Europe on vacations 
and lecturing (in 1935 a t Cambridge University, in 1936 at the 
Institut Henri Poincaré in Paris). Often he mentioned that per-
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sonally he found doing scientific work there almost impossible be
cause of the atmosphere of political tension. After the war he under
took trips abroad Only unwillingly. 

Ever since he came to the United States, he expressed his apprecia
tion of the opportunities here and very high hopes for the future of 
scientific work in this country. 

To follow chronologically von Neumann's interests and accomplish
ments is to review a large part of the whole scientific development of 
the last three decades. In his youthful work, he was concerned not 
only with mathematical logic and the axiomatics of set theory, but, 
simultaneously, with the substance of set theory itself, obtaining 
interesting results in measure theory and the theory of real variables. 
It was in this period also that he began his classical work on quantum 
theory, the mathematical foundation of the theory of measurement 
in quantum theory and the new statistical mechanics. His profound 
studies of operators in Hubert spaces also date from this period. 
He pushed far beyond the immediate needs of physical theories, and 
initiated a detailed study of rings of operators, which has independent 
mathematical interest. The beginning of the work on continuous 
geometries belongs to this period as well. 

Von Neumann's awareness of results obtained by other mathe
maticians and the inherent possibilities which they offer is astonish
ing. Early in his work, a paper by Borel on the minimax property led 
him to develop in the paper, Zur Theorie der Gesellschaft-Spiele,2 

ideas which culminated later in one of his most original creations, 
the theory of games. An idea of Koopman on the possibilities of 
treating problems of classical mechanics by means of operators on a 
function space stimulated him to give the first mathematically 
rigorous proof of an ergodic theorem. Haar's construction of measure 
in groups provided the inspiration for his wonderful partial solution 
of Hubert's fifth problem, in which he proved the possibility of in
troducing analytical parameters in compact groups. 

In the middle 30's, Johnny was fascinated by the problem of hy-
drodynamical turbulence. It was then that he became aware of the 
mysteries underlying the subject of non-linear partial differential 
equations. His work, from the beginning of the Second World War, 
concerns a study of the equations of hydrodynamics and the theory 
of shocks. The phenomena described by these non-linear equations 
are baffling analytically and defy even qualitative insight by present 

2 Paper [17]. 



8 S. ULAM 

methods. Numerical work seemed to him the most promising way to 
obtain a feeling for the behavior of such systems. This impelled him 
to study new possibilities of computation on electronic machines, 
ab initio. He began to work on the theory of computing and planned 
the work, to remain unfinished, on the theory of automata. I t was 
at the outset of such studies that his interest in the working of the 
nervous system and the schematized properties of organisms claimed 
so much of his attention. 

This journey through many fields of mathematical sciences was not 
a result of restlessness. Neither was it a search for novelty, nor a 
desire for applying a small set of general methods to many diverse 
special cases. Mathematics, in contrast to theoretical physics, is not 
confined to a few central problems. The search for unity, if pursued 
on a purely formal basis, von Neumann considered doomed to failure. 
This wide range of curiosity had its basis in some metamathematical 
motivations and was influenced strongly by the world of physical phe
nomena—these will probably defy formalization for a long time to come. 

Mathematicians, a t the outset of their creative work, are often 
confronted by two conflicting motivations: the first is to contribute 
to the edifice of existing work—it is there that one can be sure of 
gaining recognition quickly by solving outstanding problems—the 
second is the desire to blaze new trails and to create new syntheses. 
This latter course is a more risky undertaking, the final judgment of 
value or success appearing only in the future. In his early work, 
Johnny chose the first of these alternatives. I t was toward the end of 
his life that he felt sure enough of himself to engage freely and yet 
painstakingly in the creation of a possible new mathematical dis
cipline. This was to be a combinatorial theory of automata and or
ganisms. His illness and premature death permitted him to make only 
a beginning. 

In his constant search for applicability and in his general mathe
matical instinct for all exact sciences, he brought to mind Euler, 
Poincaré, or in more recent times, perhaps Hermann Weyl. One 
should remember that the diversity and complexity of contemporary 
problems surpass enormously the situation confronting the first two 
named. In one of his last articles, Johnny deplored the fact that it 
does not seem possible nowadays for any one brain to have more than 
a passing knowledge of more than one-third of the field of pure mathe
matics. 

Early work, set-theory, algebra. The first paper, a joint work with 
Fekete, deals with zeros of certain minimal polynomials. I t concerns 
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a generalization of Fejér's theorem on location of the roots of Tcheby-
scheff polynomials. Its date is 1922. Von Neumann was not quite 
eighteen when the article appeared. 

Another youthful work is contained in a paper (in Hungarian with 
a German summary) on uniformly dense sequences of numbers. It 
contains a theorem on the possibility of re-ordering dense sequences 
of points so they will become uniformly dense; the work does not yet 
indicate the future depth of formulations nor is it technically difficult, 
but the choice of subject and the conciseness of technique in proofs 
begins to indicate the combination of set-theoretical intuition and 
the algebraic technique of his future investigations. 

The set-theoretical orientation in the thinking of a great number ôf 
young mathematicians is quite characteristic of this era. The great 
ideas of George Cantor, which found their fruition finally in the 
theory of real variables, topology and later in analysis, through the 
work of the great Frenchmen, Baire, Borel, Lebesgue, and others, 
were not yet commonly part of the fundamental intuitions of young 
mathematicians at the turn of the century. After the end of the 
First World War, however, one notices that these ideas became more, 
as it were, naturally instinctive for the new generation. 

Paper [2 ] in the Acta Szeged on transfinite ordinals already shows 
von Neumann in his characteristic form and style in dealing with the 
algebraic treatment of set theory. The first sentence states frankly: 
"The aim of this work is to formulate concretely and precisely the 
idea of Cantor's ordinal numbers." As the preface states, the hereto
fore somewhat vague formulation of Cantor himself is replaced by 
definitions which can be given in the system of axioms of Zermelo. 
Moreover, a rigorous foundation for the definition by transfinite in
duction is outlined. The introduction stresses the strictly formalistic 
approach, and von Neumann states somewhat proudly that the 
symbols . . . (for "et cetera") and similar expressions are never em
ployed. This treatment of ordinal numbers, later also considered by 
Kuratowski, is to this day the best introduction of this idea, so im
portant for "constructions" in abstract set theory. Each ordinal 
number by von Neumann's definition is the set of all smaller ordinal 
numbers. This leads to a most elegant theory and moreover allows 
one to avoid the concept of ordertype, which is vague insofar as the 
set of all ordered sets similar to a given one does not exist in axiomatic 
set theory. 

Paper [S] on Priifer's theory of ideal algebraic numbers begins to 
indicate his future breadth of interests. The paper deals with set 
theoretical questions and enumeration problems about relatively 
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prime ideal components. Prüfer had introduced ideal numbers as 
"ideal solutions of infinite systems of congruences." Von Neumann 
starts with methods analogous to Kürschak and Bauer's work on 
Hensel's £-adic numbers. Here again, von Neumann exhibits the 
techniques which were to become so prevalent in the following 
decades in mathematical research—of continuing algebraical con
structions, originally considered on finite sets, to the domain of the 
infinitely enumerable and the continuum. Another indication of his 
algebraic interests is a short note [39] on Minkowski's theory of 
linear forms. 

A desire to axiomatize—and this in a sense more formal and precise 
than that originally considered by logicians at the beginning of the 
20th century—shows through much of the early work. From around 
1925 to 1929, most of von Neumann's papers deal with attempts to 
spread the spirit of axiomatization even through physical theory. 
Not satisfied with the existing formulations, even in set theory itself, 
he states again quite frankly in the first sentence of his paper [3] 
on the axiomatization of set theory:3 "The aim of the present work 
is to give a logically unobjectionable axiomatic treatment of set 
theory"; the next sentence reads, "I would like to say something at 
first about difficulties which make such a construction of set theory 
desirable." 

The last sentence of this 192 S paper is most interesting. Von 
Neumann points out the limits of any axiomatic formulation. There 
is here perhaps a vague forecast of Gödel's results on the existence of 
undecidable propositions in any formal system. The concluding 
sentence is: "We cannot, for the present, do more than to state that 

8 About this paper, Professor Fraenkel of the Hebrew University in Jerusalem 
wrote me the following: 

"Around 1922-23, being then professor at Marburg University, I received from 
Professor Erhard Schmidt, Berlin (on behalf of the Redaktion of the Mathematische 
Zeitschrift) a long manuscript of an author unknown to me, Johann von Neumann, 
with the title Die Axiomatisierung der Mengenlehre, this being his eventual doctor 
dissertation which appeared in the Zeitschrift only in 1928, (Vol. 27). I was asked to 
express my view since it seemed incomprehensible. I don't maintain that I understood 
everything, but enough to see that this was an outstanding work and to recognize ex 
ungue leonem. While answering in this sense, I invited the young scholar to visit me 
(in Marburg) and discussed things with him, strongly advising him to prepare the 
ground for the understanding of so technical an essay by a more informal essay 
which should stress the new access to the problem and its fundamental consequences. 
He wrote such an essay under the title, Eine Axiomatisierung der Mengenlehre, and I 
published it in 1925 in the Journal für Mathematik (vol. 154) of which I was then 
Associate Editor." 
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there are here objections against set theory itself, and there is no 
way known at present to avoid these difficulties. " (One is reminded 
here, perhaps, of an analogous statement in an entirely different 
domain of science: PaulFs evaluation of the state of relativistic 
quantum theory written in his Handbuch der Physik article and the 
still mysterious role of infinities and divergences in field theory.) 

His second paper [18] on this subject has the title, The axiomatiza
tion of set theory {An axiomatization of set theory was the 1925 title). 

The conciseness of the system of axioms is surprising, the introduc
tion of objects of the first and second type corresponding, respec
tively, to sets and properties of sets in the naïve set theory; the 
axioms take only a little more than one page of print. This is sufficient 
to build up practically all of the naive set theory and therewith all of 
modern mathematics and constitutes, to this day, one of the best 
foundations for set-theoretical mathematics. Gödel, in his great work 
on the independence of the axiom of choice, and on the continuum 
hypothesis, uses a system inspired by this treatment. It is noteworthy 
that in his first paper on the axiomatization of set theory, von Neu
mann recognizes explicitly the two fundamentally different directions 
taken by mathematicians in order to avoid the antinomies of Burali-
Forti, Richard and Russell. One group, containing Russell, J. König, 
Brouwer, and Weyl, takes the more radical point of view that the 
entire logical foundations of exact sciences have to be restricted in 
order to prevent the appearance of paradoxes of the above type. 
Von Neumann says, "the general impression of their activity is almost 
crushing." He objects to Russell's building the system of mathe
matics on the highly problematic axiom of reducibility, and objects 
to Weyl's and Brouwer's rejection of what he considers as the greater 
part of mathematics and set theory. 

He has more sympathy with the second less radical group, naming 
in it Zermelo, Fraenkel, and Schoenflies. He considers their work, 
including his own, as far from complete, stating explicitly that the 
axioms appear somewhat arbitrary. He states that one cannot show 
in this fashion that antinomies are really excluded but while naïve 
set theory cannot be considered too seriously, at least much of what 
it contains can be rehabilitated as a formal system, and the sense of 
"formalistic" can be defined in a clear fashion. 

Von Neumann's system gives the first foundation of set theory on 
the basis of a finite number of axioms of the same simple logical 
structure as have, e.g., the axioms of elementary geometry. The 
conciseness of the system of axioms and the formal character of the 
reasoning employed seem to realize Hubert's goal of treating mathe-
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matics as a finite game. Here one can divine the germ of von Neu
mann's future interest in computing machines and the "mechaniza
tion" of proofs. 

Starting with the axioms, the efficiency of the algebraic manipula
tion in the derivation of most of the important notions of set theory 
is astounding; the economy of the treatment seems to indicate a 
more fundamental interest in brevity than in virtuosity for its own 
sake. I t thereby helped prepare the grounds for an investigation of 
the limits of finite formalism by means of the concept of "machine" 
or "automaton."4 

I t seems curious to me that in the many mathematical conversa
tions on topics belonging to set theory and allied fields, von Neumann 
even seemed to think formally. Most mathematicians, when dis
cussing problems in these fields, seemingly have an intuitive frame
work based on geometrical or almost tactile pictures of abstract sets, 
transformations, etc. Von Neumann gave the impression of operating 
sequentially by purely formal deductions. What I mean to say is 
that the basis of his intuition, which could produce new theorems 
and proofs just as well as the "naive" intuition, seemed to be of a 
type that is much rarer. If one has to divide mathematicians, as 
Poincaré proposed, into two types—those with visual and those with 
auditory intuition—Johnny perhaps belonged to the latter. In him, 
the "auditory sense," however, probably was very abstract. I t in
volved, rather, a complementarity between the formal appearance of 
a collection of symbols and the game played with them on the one 
hand, and an interpretation of their meanings on the other. The fore
going distinction is somewhat like that between a mental picture of 
the physical chess board and a mental picture of a sequence of moves 
on it, written down in algebraic notation. 

In conversations, some quite recent, on the present status of 
foundations of mathematics, von Neumann seemed to imply that in 
his view, the story is far from having been told. Gödel's discovery 
should lead to a new approach to the understanding of the role of 
formalism in mathematics, rather than be considered as closing the 
subject. 

Paper [16] translates into strictly axiomatic treatment what was 
done informally in paper [2]. The first part of the paper deals with 
the introduction of the fundamental operations in set theory, the 
foundation of the theories of equivalence, similarity, well-ordering, 
and finally, a proof of the possibility of definition by finite or trans-

4 This was, of course, very much in Leibniz's mind. 
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finite induction, including a treatment of ordinal numbers. Von 
Neumann rightly insists at the end of his introduction to the paper 
that transfinite induction was not rigorously introduced before in any 
axiomatic or non-axiomatic system of set theory. 

Perhaps the most interesting of von Neumann's papers on axio-
matics of set theory is [23]. I t has to do with a certain necessary and 
sufficient condition which a property of sets must satisfy in order to 
define a set of sets. The condition is that there must not exist a one-
to-one correspondence between all sets and the sets which have the 
property in question. This existential principle for sets had been as
sumed as an axiom6 by von Neumann and some of the axioms as
sumed in other systems, in particular the axiom of choice, had been 
derived from it. Now it is shown that, vice versa, these other axioms 
imply von Neumann's axiom, which thereby is proved consistent, 
provided the usual axioms are. 

No. [l2] his great paper in the Mathematische Zeitschrift, Zur 
Hilbertschen Beweistheorie, is devoted to the problem of the freedom 
from contradiction of mathematics. This classical study contains an 
exposition of the primitive ideas underlying mathematical formalisms 
in general. I t is stressed that the whole complex of problems, origi
nated and developed by Hubert and also treated by Bernays and 
Ackermann, have not been satisfactorily solved. In particular, it is 
pointed out that Ackermann's proof of freedom from contradiction 
cannot be carried through for classical analysis. I t is replaced by a 
rigorous finitary proof for a certain subsystem. In fact von Neumann's 
proof shows (although this is not stated explicitly) that finitely 
iterated application of quantifiers and propositional connectives to 
any finitary (i.e., decidable) relations is consistent. This is not far 
from the limit of what can be obtained on the basis of Hubert 's origi
nal program, i.e., with strictly finitary methods. But von Neumann 
a t that time conjectured that all of analysis can be proved consistent 
with the same method. At the present time, one cannot escape the 
impression that the ideas initiated by the work of Hubert and his 
school, developed with such precision, and then revolutionized by 

6 Gödel says about this axiom : "The great interest which this axiom has lies in the 
fact that it is a maximum principle, somewhat similar to Hubert's axiom of complete
ness in geometry. For, roughly speaking, it says that any set which does not, in a cer
tain well defined way, imply an inconsistency exists. Its being a maximum principle 
also explains the fact that this axiom implies the axiom of choice. I believe that the 
basic problems of abstract set theory, such as Cantor's continuum problem, will be 
solved satisfactorily only with the help of stronger axioms of this kind, which in a 
sense are opposite or complementary to the constructivistic interpretation of mathe
matics. " 
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Gödel, are not yet exhausted. I t might be that we are in the midst 
of another great evolution: the "naive" treatment of set theory and 
the formal metamathematical attempts to contain the set of our 
intuitions about infinity are, I think, turning toward a future "super 
set theory." Several times in the history of mathematics, the in
tuitions or, one might better say, common vague feelings of leading 
mathematicians about problems of existing science, later became in
corporated in a formal "super system" dealing with the essence of 
problems in the original system. 

Von Neumann pursued his interest in problems of foundations of 
mathematics until the end of his life. A quarter of a century after the 
appearance of the above series of papers, one can see the imprint of 
this work in his discoveries in the plans for the logic of computing 
machines. 

Parallel to the work on foundations of mathematics, there come 
specific results in set theory itself and set-theoretically motivated 
theorems in real variables and in algebra. For example, von Neumann 
shows the existence of a set M of real numbers, of the power of the 
continuum, such that any finite number of the elements of M are 
algebraically independent. The proof is given effectively without the 
axiom of choice. In a paper in Fundamenta Mathematicae, [14] the 
same year, a decomposition of the interval is given into countably 
many disjoint and congruent subsets. This solved a problem of Stein-
haus—a special ingenuity is required to have such a decomposition 
on an interval—the corresponding construction of Hausdorff for the 
circumference of a circle is much easier. (This is due to the fact that 
the circumference of a circle may be regarded as a group manifold.) 

In paper [28] on the general measure theory, in Fundamenta 
(1928), the problem of a finitely additive measure is treated for sub
sets of groups. The paradoxical decompositions of the sphere by 
Hausdorff and the wonderfully strange decompositions of Banach 
and Tarski are generalized from the Euclidean space to general non-
Abelian groups. The affirmative results of Banach on the possibility 
of a measure for all subsets of the plane are generalized to the case 
of subsets of a commutative group. The final conclusion is that all 
solvable groups are "measurable" (i.e. such measure can be intro
duced in them). 

The problems and methods of this article form one of the first in
stances of a trend which developed strongly since that time, that of 
generalizing the set-theoretical results from Euclidean space to more 
general topological and algebraic structures. The "congruence" of 
two sets is understood to mean equivalence under a transformation 



JOHN VON NEUMANN, 1903-1957 IS 

belonging to a given group of transformations. The measure is a 
general additive set function. Again, the formulation of the problem 
presages the work of Haar and the study of Hausdorff-Banach-
Tarski paradoxical decompositions.6 

In the same "annus mirabilis," 1928, there appears the article on 
the theory of games. This is his first work on what was to become 
later an important combinatorial theory with so many applications 
and developments vigorously continuing at the present time. It is 
hard to believe that beginning with 1927, simultaneously with the 
work discussed above, he could have published numerous papers on 
the mathematical foundations of quantum theory, probability in 
statistical quantum theory, and some important results on repre
sentation of continuous groups ! 

Theory of functions of real variables, measure theory, topology, 
continuous groups. Professor Halmos' article describes von Neu
mann's important contributions to measure theory. We shall briefly 
mention some of his results in this field viewed against the back
ground of his other work. 

Paper [35] solves a problem of Haar. I t concerns the selection of 
representatives from classes of functions which are equivalent up to a 
set of measure zero from linear manifolds over products of powers of 
finite systems. The problem is generalized to measures other than 
Lebesgue's and an analogous problem is solved affirmatively. 

[45] contains a proof of an important fact in measure theory: Any 
Boolean mapping between two classes of measurable sets (on two 
measure spaces) which preserves their measures is generated by a 
point transformation preserving measure. This result is important in 
showing the equivalence of rather general measure spaces, when they 
are separable and complete, to Euclidean spaces with Lebesgue meas
ure, and permits one to reduce the study of Boolean algebras of meas
urable sets to ordinary measures. 

In [5l] von Neumann proves the uniqueness of the Haar measure 
as constructed by A. Haar (in Ann. of Math. vol. 34, pp. 147-169), if 
one requires either left or right invariance of the (Lebesgue-type) 
measure under group multiplication. The theorem on uniqueness is 
proved for compact groups. A construction different from that of 
Haar is employed to introduce his measure. This paper precedes the 
construction of a general theory of almost periodic functions on 
separable topological groups and allows a theory of their orthogonal 
representations. 

6 Recently pushed to the most extreme minimal form by R. M. Robinson. 
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In paper [54] the ordinary notion of completeness, usually defined 
only for metric spaces, is generalized for linear topological spaces. 
Interesting examples of spaces which are not metric but complete are 
produced. Such cases involve, of course, non-separable spaces. The 
paper also contains a novel construction of pseudo-metrics and convex 
spaces. 

In a joint paper with P. Jordan [59], a solution is given to a ques
tion raised by Fréchet of the characterization of generalized Hubert 
space among linear metric spaces. The condition which is necessary 
and sufficient, strengthening a result of Fréchet, is: A linear metric 
space L is isometric with a Hubert space if and only if every 2-dimen-
sional linear subspace is isometric with a Euclidean space. 

The results of [35] are generalized in a joint paper with M. H. 
Stone [60 ] and deal with selection of representative elements from 
residual classes in an abstract ring modulo a given left- and right-
ideal. The article contains a number of theorems on representations 
of Boolean rings modulo an ideal. 

In the Russian "Sbornik," [64], von Neumann deals again with the 
problem of the uniqueness of Haar's measure. The previous proof of 
uniqueness was accomplished through a constructive process different 
from that of Haar, which contained no arbitrary elements and led 
automatically to the uniqueness of the measure. In this paper an in
dependent treatment of uniqueness of the left- and right-invariant 
exterior measure is given for locally compact separable groups. (A 
different proof was obtained simultaneously by André Weil.) 

In a joint paper with Kuratowski, [69], precise and strong results 
are obtained on the projectivity of certain sets of real numbers de
fined by transfinite induction. The celebrated set of Lebesgue,7 shown 
previously by Kuratowski to be of projective class 3, is shown to be 
a difference of two analytic sets and therefore of the second projective 
class. A general theorem is proved on the analytic character of sets 
(in the sense of Hausdorff) obtained by certain general constructions. 
This result is likely to play an important role in the still incomplete 
theory of projective sets. 

The Mémoire in Compositio Mathematica, [75], on infinite direct 
products contains an algebraic theory of operators and a measure 
theory for such systems, so important in modern abstract analysis. 
I t summarizes some of the previous work on the algebra of functional 
operators and topology of rings of operators, including the non-
separable hyper-Hilbert spaces. Methodologically and in the actual 
constructions, this paper is both a forerunner of and a good introduc-

7 Journal de Mathématiques, 1905, Chapter VIII. 
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tion to much of the recent work in mathematics dealing, so to say, 
with the pyramiding of algebraical notions. Starting with a vector 
space, one deals first with their products, then with linear operators 
on these structures; and finally with classes of such operators whose 
algebraical properties are investigated again "on the first level." Von 
Neumann intended to discuss the analogy of this elaborate system 
with the theory of hyperquantization in quantum theory, and con
sidered the paper in particular as a mathematical preparation for 
dealing with non-enumerable products. 

The paper [24] is, I believe, the first one in which a very significant 
contribution is made to the complex of questions originating in 
Hubert 's fifth problem: the possibility of a change of parameters in a 
continuous group so that the group operation will become analytic. 
The work deals with subgroups of the group of linear transformations 
of w-dimensional space and the result is affirmative: Every such con
tinuous group has a normal subgroup, locally representable analyti
cally and in a one-to-one way by a finite number of parameters. 

This is the first of the theorems showing that the group property 
prevents the "pathological" possibilities common in the theory of 
functions of a real variable. The results of the paper, later generalized 
and simplified by E. Cartan for subgroups of general Lie groups, 
give detailed insight into the structure of such groups by the repre
sentation of elements as products of exponential operators. They 
show that every linear manifold which contains with every two 
matrices £/, V also their commutator UV—VU, is an infinitesimal 
group of an entire group G. This paper is historically important, 
as preceding the work of Cartan, a later paper of Ado, and of course, 
von Neumann's own paper [48] where Hubert 's fifth problem is 
solved for compact groups. 

This celebrated result is based on and stimulated by a paper of 
Haar (in the same volume of Annals of Math.) where an invariant 
measure function is introduced in continuous groups. Von Neumann 
shows, (using an analogue of the Peter-Weyl integration on groups 
and employing the theorem on approximability of functions by linear 
combinations of a finite number of eigenfunctions of an integral 
operator—the method of E. Schmidt's dissertation—and with an in
genious use of Brouwer's theorem on invariance of region in Euclidean 
^-dimensional space)—that every compact and w-dimensional topo
logical group is continuously isomorphic to a closed group of unitary 
matrices of a finite dimensional Euclidean space. 

The method of this article allows one to represent more general 
(not necessarily ^-dimensional) groups as subgroups of infinite 
products of such w-dimensional groups. In the second part of the 
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paper, an example is given of a finite dimensional non-compact group 
of transformations acting on Euclidean space in such a way that no 
change of parameters in the space will make the given transforma
tions analytic. I t was almost twenty years before the solution of 
Hilbert's fifth problem was completed, to include the "open" (i.e., 
non-compact) ^-dimensional groups, by the work of Montgomery 
and Gleason. Von Neumann's achievement required an intimate 
knowledge of both the set-theoretical, real variable techniques, a feel
ing for the spirit of Brouwerian topology, and a real understanding 
of the technique of integral equations and the calculus of matrices. 

A combination of virtuosity in the mode of abstract algebraic 
thinking and the employment of analytical techniques can be seen 
in the joint paper [SO] with Jordan and Wigner on an algebraic 
generalization of the quantum mechanical formalism. This is con
ceived as a possible starting point for future generalizations of the 
quantum mechanical theories and deals with commutative but not 
associative hypercomplex algebras. The essential result is that all 
such formally real finite and commutative r-number systems 
are merely matrix algebras, with one exception. This exception, how
ever, seems too narrow for the generalizations needed in quantum the
ories. 

An unpublished result, announced in the Bulletin of the American 
Mathematical Society [14, Appendix 2] contains the theorem on the 
simplicity (of the component of unity) of the group of all homeo
morphisms of the surface of the 3-dimensional sphere. The actual 
theorem is that, given two arbitrary homeomorphisms A, B (neither 
equal to identity)—there exists a fixed number (23 is sufficient!) of 
conjugates of the first one whose product is equal to B. 

Hilbert space, operator, theory, rings of operators. A detailed ac
count of von Neumann's fundamental and comprehensive treatment 
of these topics is presented in the articles in this volume by Professor 
Murray and Professor Kadison. His first interest in this subject 
also stemmed from work on rigorous formulations of quantum theory. 
In 1954, in a questionnaire which von Neumann answered for the 
National Academy of Sciences, he named this work as one of his 
three contributions to mathematics that he considered most im
portant. In sheer bulk alone, papers on these subjects comprise 
roughly one-third of his printed work. These contain a very detailed 
analysis of properties of linear operators and an algebraical study 
of classes (rings) of operators in infinite-dimensional spaces. The 
result fulfills his avowed purpose stated in the book, Mathematische 
Grundlagen der Quantenmechanik [47a], of demonstrating that the 
ideas originally introduced by Hilbert are capable of constituting 
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an adequate basis for the physical considerations of quantum theory, 
and that no need exists for the introduction of new mathematical 
schemes for these physical theories. Von Neumann's unbelievably 
detailed and meticulous work of classification of the properties of 
linearity for unitary spaces resolves many problems for unbounded 
operators. I t gives a complete theory of hypermaximal transforma
tions and brings Hubert space almost as completely within the 
grasp of the mathematician as is the case with the finite dimensional 
Euclidean space. 

His interest in this subject was continuous throughout his scien
tific life. Even up to the end, in the midst of work on other subjects, 
he obtained and published results on the properties of operators and 
spectral theory. Paper [lOó] was published in 1950, and written in 
honor of the 75th birthday of Erhard Schmidt. (It was Schmidt who 
first introduced him to the fascinations of this subject.) No one has 
done more than von Neumann, at least in the unitary case and for 
linear transformations, towards the resolution of the mysteries of 
non-compactness. Future work in this direction will be based on his 
results for a long time to come. This work is now being vigorously 
continued by, among others, his collaborators and former students— 
Murray in particular—and one is entitled to expect from them further 
valuable insight into the properties of linear operators. 

Theory of lattices, continuous geometry. Birkhoff's article, von 
Neumann and lattice theory, presents the work on these subjects. Here 
again, von Neumann's interest was stimulated by the possibility of 
applying these new combinatorial and algebraic schemes to quantum 
theory. Lattice theory, around 1935, was being developed and gen
eralized by Garrett Birkhofî from the original formulations of 
Dedekind. At about the same time, an algebraic and set-theoretical 
study of Boolean algebras was systematically undertaken by M. H. 
Stone. I remember that in the summer of 1935, Birkhoff, Stone, and 
von Neumann, on their way from a mathematical meeting in Mos
cow, stopped in Warsaw and presented short talks at a meeting of the 
Warsaw Mathematical Society on the new developments in these 
fields with novel formulations of the logic of quantum theory. The 
ensuing discussions led one to expect far-reaching applications of the 
general Boolean Algebra and lattice theory formulations of the 
language of quantum theory. Von Neumann returned to these at
tempts several times later in his work, but most of his thoughts in 
this direction are in unpublished notes.8 

8 Professor Givens is preparing an edition of the lecture notes to be published 
shortly by the Princeton Press. Another paper on continuous geometry written in 1935 
is being published in the Annals of Mathematics. 
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His work on continuous geometries and geometries without points 
was motivated by the belief that the primitive notions of quantum 
theory deal with such entities; obviously, the "universe of discourse" 
consists of certain classes of identified points or linear manifolds in 
Hubert space. (This is noted explicitly by Dirac in his book.) 

Some of this work was considered for presentation in colloquium 
lectures; an account of it is contained in the Princeton Institute Lec
tures; some remains in manuscript form. In conversations with him 
touching upon these problems, my impression was that, beginning 
about 1938, von Neumann felt that the new facts and problems of 
nuclear physics gave rise to problems of an entirely different type 
and made it less important to insist on a mathematically flawless 
formulation of a quantum theory of atomic phenomena alone. After 
the end of the war, he would express sentiments, somewhat similar 
to remarks reportedly made by Einstein, that the bewildering wealth 
of nuclear and elementary particle physics make premature any at
tempt to formulate a general quantum theory of fields, at least for 
the time being. 

Theoretical physics. Professor Van Hove describes von Neumann's 
work in Von Neumann's contributions to quantum theory. 

In the questionnaire for the National Academy of Science men
tioned earlier, von Neumann selected as his most important scien
tific contributions work on mathematical foundations of Quantum 
Theory and the Ergodic Theorem (in addition to the Theory of 
Operators discussed above). This choice, or rather restriction, might 
appear curious to most mathematicians, but is psychologically in
teresting. I t seems to indicate that perhaps his main desire and one 
of his strongest motivations was to help re-establish the role of 
mathematics on a conceptual level in theoretical physics. The drifting 
apart of abstract mathematical research and of the main stream of 
ideas in theoretical physics since the end of the First World War is 
undeniable. Von Neumann often expressed concern that mathematics 
might not keep abreast of the exponential increase of problems and 
ideas in physical sciences. I remember a conversation in which I ad
vanced the fear that a sort of Malthusian divergence may take place: 
the physical sciences and technology increase in a geometrical ratio 
and mathematics in an arithmetical progression. He said that this 
indeed might be the case. Later in the discussion, we both managed 
to cling, however, to the hope that the mathematical method would 
remain for a long time in conceptual control of the exact sciences! 

Article [7] is published jointly with Hubert and Nordheim. Ac
cording to the preface, it is based on a lecture given by Hubert in the 
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winter of 1926 on the new developments in quantum theory, and pre
pared with the help of Nordheim. According to the introduction, 
important parts of the mathematical formulation and discussion are 
due to von Neumann. 

The stated aim of the paper is to introduce, instead of strictly 
functional relationships of classical mechanics, probability relation
ships. I t also formulates the ideas of Jordan and Dirac in a con
siderably simpler and more comprehensible manner. Even now, 30 
years later, it is difficult to overestimate the historical importance and 
influence of this paper and the subsequent work of von Neumann in 
this direction. The great program of Hubert in axiomatization gains 
here another vital domain of application, an isomorphism between a 
physical theory and the corresponding mathematical system. An ex
plicit statement in the introduction to the paper is that it is difficult 
to understand the theory if its formalism and its physical interpreta
tion are not separated concisely and completely. Such separation is 
the aim of the paper, even though it is admitted that a complete 
axiomatization was at the time impossible. May we add here paren
thetically that such complete axiomatization of a relativistically in
variant quantum theory, embracing its application to nuclear phe
nomena is still to be achieved.9 The paper contains an outline of the 
calculus of operators which correspond to physical observables, dis
cusses the properties of Hermitean operators, and altogether forms a 
prelude to the Mathematische Begrundung der Quantenrnechanik. 

Von Neumann's precise and definitive ideas on the role of statisti
cal mechanics in quantum theory and the problem of measurement 
are introduced in [lO]. 

His well-known book, [47a], gives both the axiomatic treatment, 
the theory of measurement, and statistics in detailed discussions. 

At least two mathematical contributions are of importance in the 
history of quantum mechanics: The mathematical treatment by 
Dirac did not always satisfy the requirements of mathematical rigor. 
For example, it operated with the assumption that every self-ad joint 
operator can be brought into diagonal form, which forced one to 
introduce for those operators where this cannot be done, the famous 
"improper" functions of Dirac. A priori it might seem, as von 
Neumann states, tha t just as Newtonian mechanics required (at that 

9 For an excellent succinct summary of the present state of axiomatizations of 
non-relativistic quantum theory in the domain of atomic phenomena, see the article 
by George Mackey, Quantum mechanics and Hilbert space, Amer. Math. Monthly, 
October, 1957, still based essentially on von Neumann's book, Mathematische Grund-
lagen der Quantenrnechanik. 
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time) the contradictory infinitesimal calculus, so quantum theory 
seemed to need a new form of analysis of infinitely many variables. 
Von Neumann's achievement was to show that this was not the case, 
namely, that the transformation theory could be put on a clear 
mathematical basis not by making precise the methods of Dirac but 
by developing Hubert 's spectral theory of operators. In particular, 
this was accomplished by his study of non-bounded operators going 
beyond the classical theory of Hilbert, F. Riesz, E. Schmidt, and 
others. 

The second contribution forms the substance of Chapters 5 and 6 
of his book. I t has to do with the problems of measure and reversibil
ity in quantum theory. Almost from the beginning, when the ideas of 
Heisenberg, Schrödinger, Dirac, and Born were enjoying their first 
sensational success, questions were raised on the role of indeter-
minism in the theory and proposals made to explain it by the assump
tion of possible "hidden" parameters which, when discovered in the 
future, would allow a return to a more deterministic description. Von 
Neumann shows that the statistical character of statements of the 
theory is not due to the fact that the state of the observer who per
forms the measurement is unknown. The system comprising both the 
observed and observer leads to the uncertainty relations even if one 
admits an exact state of the observer. This is shown to be the con
sequence of the previous assumptions of quantum theory involving 
the general properties of association of physical quantities with opera
tors in Hilbert space.10 

Apart from the great didactic value of this work which presented 
the ideas of the new quantum theory in a form congenial and tech
nically interesting to mathematicians, it is a contribution of ab
solutely first importance, considered as an attempt to make a rational 
presentation of a physical theory which, as originally conceived by 
the physicists, was based on non-universally communicable intui
tions. While it cannot be asserted that it introduced ideas of novel 
physical import—and the quantum theory as conceived during these 
years by Schrödinger, Heisenberg, Dirac, and others still forms only 
an incomplete theoretical skeleton for the more baffling physical 
phenomena discovered since—von Neumann's treatment allows at 

10 It is impossible to summarize here the mathematical argument involved. The 
great majority of physicists still agree with von Neumann's proposition. This is not 
to say that a theory different from the present mathematical formulations of quantum 
mechanics might not allow such a role for hidden parameters. For a recent discussion, 
see Volume 9 of the Colston Papers, being the Proceedings of the Ninth Symposium 
of the Colston Research Society held in the University of Bristol, April 1-April 4, 
1957, discussions of Bohm, Rosenfeld, et al. 
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least one logically and mathematically clear basis for a rigorous treat
ment. 

Analysis, numerical work, work in hydrodynamics. An early paper 
is [33]. In it, a fundamental lemma in the calculus of variations due 
to Radó is proved by means of a simple geometrical construction 
(the lemma asserts that a function z=f(x, y) satisfies a Lipschitz 
condition with a constant A if no plane whose maximal inclination is 
greater than A meets the boundary of the surface defined by the 
given function in three or more points). The paper is also interesting 
in that the method of proof involves direct geometric visualizations 
somewhat rare in von Neumann's published work. 

The paper [41 ] contains one of the impressive achievements of 
mathematical analysis in the last quarter century. I t is the first pre
cise mathematical result in a whole field of investigation : a rigorous 
treatment of the ergodic hypothesis in statistical mechanics. I t was 
stimulated by the discovery by Koopman of the possibility of reduc
ing the study of Hamiltonian dynamical systems to that of operators 
in Hubert space. Using Koopman's representation, von Neumann 
proved what is now known as the weak ergodic theorem, or the con
vergence in measure of the means of functions of the iterated, meas
ure-preserving transformation on a measure space. I t is this theorem, 
strengthened shortly afterwards by G. D. Birkhoff, in the form of 
convergence almost everywhere, which provided the first rigorous 
mathematical basis for the foundations of classical statistical me
chanics. The subsequent developments in this field and the numerous 
generalizations of these results are well-known and will not be men
tioned here in detail. Again, this success was due to the combination 
of von Neumann's mastery of the techniques of the set-theoretically 
inspired methods of analysis and those originating in his own work on 
operators on Hubert space. Still another domain of mathematical 
physics became accessible to precise and general considerations of 
modern analysis. In this instance again, a great initial advance was 
scored, but, of course, here the story is really quite unfinished; a 
mathematical treatment of the foundations of statistical mechanics, 
in the case of classical dynamics, is far from complete! It is very well 
to have the ergodic theorems and the knowledge of the existence of 
metrically transitive transformations; these facts, however, form 
only a basis of the subject. Von Neumann often expressed in conversa
tions a feeling that future progress will depend on theorems which 
would allow a mathematically satisfactory treatment of the sub
sequent parts of the subject. A complete mathematical theory of the 
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Boltzmann equation and precise theorems on the rates at which sys
tems tend towards equilibrium are needed. 

Important work is contained in the article [56], a joint work with 
S. Bochner. The use of operator-theoretical methods allows a rather 
profound discussion of the properties of partial differential equations 
of the type A^>=d<t>/dt, <£=<£(£; x, y, z), with A of the form 

/ d2 d2 d2 \ 
A = a[ + + ) 

\dx2 dy2 dz2/ 
as in problems of heat conduction, or A = (Ini/h)!!, where H is the 
energy operator in Schrödinger's quantum mechanical equation for 
non-stationary states. 

An example of the combination of analytical and geometrical 
techniques is the joint work with Schoenberg [80]. If S is a metric 
space, d(f, g) being the distance between any two elements of it, we 
call a function, ft, whose values lie in S and which is continuous, a 
screw function if d(ftl f8) = F(t — s). The fundamental theorem de
termines the class of all such functions on a Hilbert space and de
termines their form. (Any such function F(t) is given by 

J'00 s i n 2 ^ 
— — dy(u) 

o u2 

where y(u) is non-decreasing for u è 0 and such thatf?u~~2dy(u) exists.) 
The paper [86], perhaps less well-known than it deserves to be, 

shows an increasing interest in approximation problems and in numer
ical work. I t seems to me of very considerable didactical value. I t deals 
with properties of finite NXN matrices for large N. The behavior 
of the space of all linear operations on the iV-dimensional complex 
Euclidean space is investigated. This is done in detail directly, and 
it is stated explicitly in the preface that such an asymptotic approach 
has been unjustifiably neglected compared to the usual approach 
which is the study of the limiting case, i.e., the actually infinitely 
dimensional unitary space, that is to say, Hilbert space. (It is curious 
to contrast this statement with the almost opposite point of view 
expressed in the introduction to his book, Mathematische Grundlagen 
der Quantenmechanik.) 

In general terms, the paper deals with the question of which iVth 
order matrices behave or behave approximately as if they were mth 
order matrices, (m being small compared to N and a divisor of it.) 
The notion of approximate behavior is made precise in a given metric 
or pseudo metric in the space of matrices. I should like to add that 
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this paper has a praiseworthy elementary character of exposition not 
always found in his work on Hilbert space. 

Work belonging to this same order of ideas is continued in his 
joint paper [91 ] with Bargmann and Montgomery. I t contains an 
account of various methods of solving a system of linear equations 
and is oriented towards the possibilities, already beginning to appear 
a t tha t time, of computations involving the use of electronic ma
chines. 

In problems of applied analysis, the war years brought a need for 
quick estimates and approximate results in problems which often do 
not present a very "clean" appearance, that is to say, are mathe
matically very inhomogeneous, the physical phenomena to be cal
culated involving, in addition to the main process, a number of ex
ternal perturbations whose effect cannot be neglected or even sepa
rated in additional variables. This situation comes up often in ques
tions of present day technology and forces one, a t least initially, to 
resort to numerical methods, not because one requires the results 
with high accuracy but simply to achieve qualitative orientation! 
This fact, perhaps somewhat deplorable for a mathematical purist, 
was realized by von Neumann whose interest in numerical analysis 
increased greatly at that time. 

A joint work with H. H. Goldstine, [94], presents a study of the 
problem of the numerical inversion of matrices of high order. Among 
other things, it at tempts to give rigorous error estimates. Interesting 
results are obtained on the precision achievable in inverting matrices 
of order ^ 1 5 0 . Estimates are obtained "in the general case." ("Gen
eral" means that under plausible assumed statistics, these estimates 
hold with the exception of a set of low probability.) 

In a subsequent paper on this subject, [109], the problem is re
considered in an effort to obtain optimum numerical estimates. Given 
a matrix A = (an) (i, j = 1, 2, • • • n) whose elements are independent 
random variables, each normally distributed, the probability that 
the upper bound of this matrix exceeds 2.72o-w1/2 where a is the dis
persion of each variable, is less than .027 X2~~nn"1/2. 

The development of the fast electronic computing machines was 
prompted primarily by the need of a quick orientation and answer to 
problems in mathematical physics and engineering. There is, as a 
byproduct, an opportunity for some lighter work! Thus, for example, 
one can now try to satisfy, to a modest extent, some of the curiosity 
which is felt about certain interesting sequences of integers, e.g., to 
mention the simplest ones, the frequency of the sequence of digits in 
the development of e and 7r, carried to many thousands of places. 
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One such computation, performed on the machine at the Institute for 
Advanced Study, gives the first 2,000 partial quotients of the cube 
root of 2 in its development as a continued fraction. Johnny was in
terested in such experimental work no matter how simple-minded 
the problem; in one discussion in Los Alamos on such questions, he 
asked to be given "interesting" numbers for computation of their 
continued fraction development. I named the quartic irrationality y 
given by the equations y = l/(x+y) where x = l/(l+x) as one in 
whose development there might appear some curious regularities. 
Computations of many other numbers were planned, but it is not 
known to me whether this little project was ever pursued. 

Game theory. This subject forms a new, rapidly developing 
chapter in present-day mathematical research; it is essentially a 
creation of von Neumann's. His fundamental work in this field will 
be described elsewhere in this volume by A. W. Tucker and H. W. 
Kuhn and I shall content myself with remarking that it presents 
some of his most fecund and influential work. I t was Borel, in 
a note in the Comptes-Rendus in 1921, who first formulated a mathe
matical scheme describing strategies in a game between two players. 
The subject can, however, be dated as really originating in the paper 
of von Neumann, [17]. I t is there that the fundamental "minimax" 
theorem is proved and the general scheme of a game between n 
players (n^2) is formulated. Such schemata, quite apart from their 
interest and applications to actual games in economics, etc. in
troduced a wealth of novel combinatorial problems of purely mathe
matical interest. The theorem that Min Max = Max Min and the 
corollaries on the existence of saddle points of functions of many 
variables is contained in his 1937 paper [72]. They are shown to be a 
consequence of a generalization of Brouwer's fixed-point theorem and 
of the following geometrical fact. Let 5, T be two non-empty, convex, 
closed, and bounded sets contained in the Euclidean spaces Rn and 
Rm respectively. Let S XT be the direct product of these sets and V, 
W two closed subsets of it. Assume that for every element x of S 
the set Q(x) of all y such that (xy y) belongs to F is a closed convex 
and non-empty set. Analogously, for every y in T the set P(y) of all 
x such that (x, y) belongs to W also has this property. Then the sets 
V and W have at least one point in common. This theorem, further 
discussed by Kakutani, Nash, Brown and others, plays a central 
role in the proofs of existence of "good strategies." 

Game theory, including now a study of infinite games (first formu
lated by Mazur in Poland around 1930) is in vigorous mathematical 
development. It suffices to refer to the work contained in the three 
volumes, Contributions to Game Theory [102; 113; 114], to point 
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out the wealth of ideas, the variety of ingenious formulations in 
purely mathematical context, and the increasing number of im
portant applications; it abounds in simply stated problems still un
solved. 

Economics. The now classical treatise by Oskar Morgenstern and 
John von Neumann, Theory of games and economic behavior [90 ] 
contains an exposition of Game Theory in its purely mathematical 
form with a very detailed account of applications to actual games; 
and together with a discussion of some fundamental questions of 
economic theory introduces a different treatment of problems of 
economic behavior and certain aspects of sociology. The economist 
Oskar Morgenstern, a friend of von Neumann's in Princeton for 
many years, interested him in aspects of economic situations, 
specifically in problems of exchange of goods between two or more 
persons, in problems of monopoly, oligopoly and free competition. 
It was in a discussion of attempts to schematize mathematically 
such processes that the present shape of this theory began to take 
form. 

The present numerous applications to "operational research," prob
lems of communications and the statistical estimation theory of A. 
Wald either stem from or are drawing upon the ideas proposed and 
worked out in this monograph. We cannot outline in this article 
even the scope of these investigations. The interested reader may 
find an account of it in, e.g., L. Hurwicz's The theory of economic 
behavior11 and J. Marshak's Neumann's and Morgenstern's new ap
proach to static economics.12 

Dynamics, mechanics of continua, meteorological calculations. 
In two papers written jointly with S. Chandrasekhar [84 and 88] the 
following problem is considered. A random distribution of mass 
centers is assumed; these might be, for example, stars in a cluster or a 
cluster of nebulae. These masses are mutually attracting and in mo
tion. The problem is to develop the statistics of the fluctuating 
gravitational field and the study of the motions of individual masses 
subject to the changing influence of the varying local distributions. 
In the first paper, the problem of the rate of the fluctuations in the 
distribution function for the force is solved through ingenious calcula
tions, and a general formula is obtained for the probability distribu
tions W(F, ƒ) of a gravitational field strength F and an associated 
rate of change ƒ which is the derivative of F with respect to time. 
Among the results obtained is the theorem that for weak fields the 

11 American Economic Review vol. 35 (1945) pp. 909-925. 
12 Journal of Political Economy vol. 54 (1946) pp. 97-115. 
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probability of a change occurring in the field acting at a given instant 
of time is independent of the direction and magnitude of the initial 
field, while for strong fields, the probability of a change occurring in 
the direction of the initial field is twice as great as in a direction at 
right angles to it. 

The second paper is devoted to a statistical analysis of the speed of 
fluctuations in the force per unit mass acting on a star which moves 
with a velocity V with respect to the centroid of the nearby stars. 
This problem is solved on the assumption of a uniform Poisson dis
tribution of the stars and a spherical distribution of the local veloc
ities. It is solved for a general distribution of different masses. An 
expression is derived for the correlations in the force acting at two 
very close points. The method gives the asymptotic behavior of the 
space correlations. Von Neumann was long interested in the phe
nomenon of turbulence. The writer remembers discussions in 1937 on 
the possibility of a statistical treatment of the Navier-Stokes equa
tions by an analysis of hydrodynamical problems through replace
ment of the partial differential equations by a system of infinitely 
many total differential equations satisfied by the Fourier coefficients 
in the development of the Lagrangian functions in a Fourier series. 
A mimeographed report written by von Neumann for the Office of 
Naval Research in 1949, Recent theories of turbulence, constitutes a 
penetrating and lucid presentation of the ideas of Onsager and 
Kolmogoroff, and of other work up to that time. 

With the beginning of the second World War, von Neumann under
took a study of problems presented by the motions of compressible 
gases and especially the perplexing phenomena of formation of dis
continuities, e.g., shocks. 

The greater part of his voluminous study in this field was prompted 
by problems arising in defense work. They were published in the 
form of reports. A selection is included in the bibliography. 

It is impossible to summarize here this varied work; most of it is 
characterized by his incisive analytical technique and the accus
tomed clarity of logic. In the theory of interaction of colliding shocks, 
his contributions are especially noteworthy. One result is the first 
rigorous justification of the Chapman-Jouguet hypothesis concerning 
the process of detonation, that is, a combustion process initiated by a 
shock. 

The first systematic development of the theory of reflection of 
shock waves was initiated by von Neumann (Progress report on the 
theory of shock wave, NDRC, Div.' 8, OSRD, No. 1140, 1943 and 
Oblique reflection of shocks, Navy Department, Explosive Research 
Report no. 12, 1943). 
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As noted before, the problem of following, even only qualitatively, 
the motions of compressible media in two or three dimensions sur
passes the present powers of explicit analysis. What is worse, the 
mathematical foundations of a theory which would describe the 
physical phenomena are, perhaps so far, quite inadequate. Von 
Neumann's feelings in this matter are well expressed in comments 
contained in [108]: 

"The question as to whether a solution which one has found by mathematical reason 
really occurs in nature and whether the existence of several solutions with certain good or 
bad features can be excluded beforehand, is a quite difficult and ambiguous one. This 
subject has been considered in the classical literature as well as in the more recent literature, 
on widely varying levels of rigor and of its opposite. In summa, it is quite difficult ever 
to be sure of anything in this domain. Mathematically, one is in a continuous state of 
uncertainty, because the usual theorems of existence and uniqueness of a solution, that 
one would like to have, have never been demonstrated and are probably not true in their 
obvious forms." 

and later, 
"Thus there exists a wide variety of mathematical possibilities in fluid mechanics, 

with respect to permitting discontinuities, demanding a reasonable thermodynamic be
havior etc., etc. There probably exists a set of conditions under which one and only one 
solution exists in every reasonably stated problem. However, we have only surmises as to 
what it is and we have to be guided almost entirely by physical intuition in searching for 
it. It is therefore impossible to be very specific about any point. And it is difficult to say 
about any solution which has been derived, with any degree of assurance, that it is the one 
which must exist in nature." 

One has to resort to numerical work in special cases if only to get a 
heuristic insight into these difficult questions. In a whole series of 
reports, von Neumann discussed the best numerical procedures, dif
ferencing schemes, questions of numerical stability of computational 
schemes for such calculations. One should mention in particular the 
paper [lOO] with Richtmyer, where, in order not to introduce ex
plicitly the shock conditions and discontinuities, a purely mathe
matical, fictitious viscosity is introduced, allowing one to proceed 
to calculate the motion of shocks without postulating them explicitly 
but following step by step the ordinary hydrodynamic equations. 

The formidable mathematical problems presented by the hydro-
dynamical equations of the motions of the earth's atmosphere fasci
nated von Neumann for a considerable time. With the advent of 
computing machines, a detailed numerical study at least of simplified 
versions of the problems became possible, and a large program of 
such work was started by him. At the Institute in Princeton, a 
meteorological research group was established;18 the plan was to 

18 J. Charney was working closely with him on problems of meteorology, e.g., 
paper [104]. 
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attack the problem of numerical weather solution by a step-by-step 
investigation of models which were to approximate more and more 
closely the real properties of the atmosphere. A numerical investiga
tion of truly 3-dimensional motions is at present impractical even 
on the most advanced electronic computing machines. (This may not 
be the case, say five years from now.) 

The first highly schematized computations which von Neumann 
initiated dealt with a 2-dimensional model and for the most part in 
the so-called geostrophic approximation. Later, what might be called 
"2 + 1/2" dimensional hydrodynamical computations were performed 
by assuming two or three 2-dimensional models corresponding to 
different altitudes or pressure levels interacting with each other. This 
problem was dear to his mind, both because of its intrinsic mathe
matical interest, and because of the enormous technological conse
quences which a successful solution could have. He believed that our 
knowledge of dynamics of controlling processes in the atmosphere, 
together with the development of computing machines, was ap
proaching a level that would permit weather prediction. Beyond that, 
he believed that one could understand, calculate, and perhaps put 
into effect processes ultimately permitting control and change of the 
climate. 

In the paper [120] he speculated on the approach of the time when 
one could produce, with the now available vast nuclear sources of 
energy, changes in the general circulation of the atmosphere of the 
same order of magnitude as "the great globe itself." In such problems 
where the physics of the phenomena are already understood, it might 
be that a future Mathematical Analysis will enable the human race 
to extend vastly its control over nature. 

Theory and practice of computing on electronic machines, Monte 
Carlo method. Von Neumann's interest in numerical work had differ
ent sources. One stemmed from his original work on the role of 
formalism in mathematical logic and set-theory, and his youthful 
work was concerned extensively with Hubert's program of consider
ing mathematics as a finite game. Another equally strong motivation 
came from his work in problems of mathematical physics including 
the purely theoretical work on ergodic theory in classical physics and 
his contributions to quantum theory. A growing exposure to the more 
practical problems encountered in hydrodynamics and in the mani
fold problems of mechanics of continua arising in the technology of 
nuclear energy led directly to problems of computation. 

We have already briefly discussed his interest in the problems of 
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turbulence, general dynamics of continua, and meteorological calcula
tions. 

I remember quite well how, very early in the Los Alamos Project, 
it became obvious that analytical work alone was often not sufficient 
to provide even qualitative answers. The numerical work by hand 
and even the use of desk computing machines would require a pro
hibitively long time for these problems. This situation seemed to 
provide the final spur for von Neumann to engage himself energeti
cally in the work on methods of computation utilizing the electronic 
machines. 

For several years von Neumann had felt that in many problems of 
hydrodynamics—in propagation and the behavior of shocks, and 
generally in cases where the non-linear partial differential equations 
describing the phenomena had to be applied in instances involving 
large displacements (that is to say, in cases where linearization would 
not adequately approximate the true description) numerical work 
was necessary to provide heuristic material for a future theory. 

This final necessity compelled him to examine, from its foundations, 
the problem of computing on electronic machines and, during 1944 
and 1945, he formulated the now fundamental methods of translating 
a set of mathematical procedures into a language of instructions for a 
computing machine. The electronic machines of that time (e.g., the 
Eniac) lacked the flexibility and generality which they now possess 
in the handling of mathematical problems. Speaking broadly, each 
problem required a special and different system of wiring, in order 
to enable the machine to perform the prescribed operations in a given 
sequence. Von Neumann's great contribution was the idea of a fixed 
and rather universal set of connections or circuits in the machine, a 
"flow diagram," and a "code" so as to enable a fixed set of connec
tions in the machine to have the means of solving a very great variety 
of problems. While, a priori at least, the possibility of such an ar
rangement might be obvious to mathematical logicians, the execution 
and practice of such a universal method was far from obvious with 
the then existing electronic technology. 

I t is easy to underestimate, even now, ten years after the inception 
of such methods, the great possibilities opened through such theoreti
cal experimentation in problems of mathematical physics. The field 
is still new and it seems risky to make prophesies, but the already 
accumulated mass of theoretical experiments in hydrodynamics, 
magneto-hydrodynamics, and quantum-theoretical calculations, etc., 
allow one to hope that good syntheses may arise from these computa
tions. 
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The engineering of the computing machines owes a great deal to 
von Neumann. The logical schemata of the machines, the planning 
of the relative roles of their memory, their speed, the selection of 
fundamental "orders" and their circuits in the present machines bear 
heavily the imprint of his ideas. Von Neumann himself supervised 
the construction of a machine a t the Institute for Advanced Study 
in Princeton, so as to have an acquaintance with the engineering 
problems involved and at the same time to have at hand this tool for 
novel experimentation. Even before the machine was finished, which 
took longer than anticipated, he was involved in setting up and 
executing enormous computations arising in certain problems at the 
Los Alamos Laboratory. One of these, the problem of following the 
course of a thermonuclear reaction, involved more than a billion of 
elementary arithmetical operations and elementary logical orders. 
The problem was to find a "yes" or "no" answer to the question of 
propagation of a reaction. One was not concerned with providing the 
final data with great accuracy but, in order to obtain an answer to 
the original question, all the intermediate and detailed computations 
seemed necessary. I t is true that guessing the behavior of certain 
elements of the problem, together with hand calculations, could in
deed throw considerable light on the final answer. In order to increase 
the degree of confidence in estimates thus obtained by intuition, an 
enormous amount of computational work had to be undertaken. This 
seems to be rather common in some new problems of mathematical 
physics and of modern technology. Astronomical accuracy is not re
quired in the description of the phenomena; in some cases, one would 
be satisfied with predicting the behavior "up to 10 percent" and yet 
during the course of the calculations, the individual steps have to be 
kept as accurate as possible. The enormous number of elementary 
steps then poses the problem of estimating the reliability of final re
sults and problems on the intrinsic stability of mathematical methods 
and their computational execution. 

In receiving the Fermi prize of the Atomic Energy Commission, 
von Neumann was cited especially for his contribution to the de
velopment of computing on the electronic machines, so useful in 
many aspects of nuclear science and technology. 

The electronic computing machines with their speed of computa
tion surpassing that of the hand calculations by a factor of many 
thousands invite the invention of entirely new methods not only in 
numerical analysis in the classical sense, but in the very foundations 
of procedures of mathematical analysis itself. Nobody was more 
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aware of these implications than von Neumann. A small example of 
what we mean here can be illustrated by the so-called Monte Carlo 
Method. The methods of numerical analysis as developed in the past 
for hand work, or even for the relay machines, are not necessarily 
optimal for computations on the electronic machines. So, for example, 
it is obvious that instead of employing tables of elementary functions, 
it is more economical to compute the desired values directly. Next, 
it is clear that the procedures of integration of equations by reduction 
to quadratures, etc., can now be circumvented by schemes so com
plicated arithmetically that they could not even be considered for 
hand work, but which are very feasible on the new machines. Literally 
dozens of computational tricks, "subroutines," e.g., for calculating 
elementary algebraical or transcendental functions, for solving of 
auxiliary equations, etc. were produced by von Neumann during the 
years following the World War. Some of this work, by the way, is 
not as yet generally available to the mathematical public, but is 
more widely known among the now numerous technological and 
scientific groups utilizing the computing machines in industrial or 
government projects. This work includes methods for finding eigen
values and inversion of matrices, methods for economical search for 
extrema of functions of several variables, production of random 
digits, etc. Much of this exhibits the typical combinatorial dexterity, 
in some cases, of virtuoso quality, of his early work in mathematical 
logic and algebraical studies in operator theory. 

The simplicity of mathematical formulation of the principles of 
mathematical physics hoped for in the nineteenth century seems to be 
conspicuously absent in modern theories. A perplexing variety and 
wealth of structure found in what one considered as elementary 
particles, seem to postpone the hopes for an early mathematical syn
thesis. In applied physics and in technology one is forced to deal with 
situations which, mathematically, present mixtures of different sys
tems: For example, in addition to a system of particles whose be
havior is governed by equations of mechanics, there are interacting 
electrical fields, described by partial differential equations; or, in the 
study of behavior of neutron-producing assemblies, one has, in addi
tion to a system of neutrons, the hydrodynamical and the thermo-
dynamical properties of the whole system interacting with the dis
crete assembly of these particles. 

From the point of view of combinatorics alone, not to mention the 
difficulties of analysis in the handling of several partial differential 
and integral equations, it is clear that at the present time, there is 
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very little hope of finding solutions in a closed form. In order to find, 
even only qualitatively, the properties of such systems, one is forced to 
look for pragmatic methods. 

We decided to look for ways to find, as it were, homomorphic 
images of the given physical problem in a mathematical schema which 
could be represented by a system of fictitious "particles" treated by 
an electronic computer. It is especially in problems involving func
tions of a considerable number of independent variables that such 
procedures would be applied. To give a very simple concrete example 
of such a Monte Carlo approach, let us consider the question of 
evaluating the volume of a subregion of a given w-dimensional "cube" 
described by a set of inequalities. Instead of the usual method of ap
proximating the volume required by a systematic subdivision of the 
space into its lattice points one could select, at random,, with uniform 
probability, a number of points in space and determine (on the 
machine) how many of these points belong to the given region. This 
proportion will give us, according to elementary facts of probability 
theory, an approximate value of the relative volumes, with the prob
ability as close to one as we wish, by employing a sufficient number of 
sample points. As a somewhat more complicated example, consider 
the problem of diffusion in a region of space bounded by surfaces 
which partly reflect and partly absorb the diffusing particles. If the 
geometry of the region is complicated, it might be more economical 
to try to perform "physically" a large number of such random walks 
rather than to try to solve the integro-differential equations clas
sically. These "walks" can be performed conveniently on machines 
and such a procedure in fact reverses the treatment which in prob
ability theory reduces the study of random walks to the study of 
differential equations. 

Another instance of such methodology is, given a set of functional 
equations, to attempt to transform it into an equivalent one which 
would admit of a probabilistic or game theory interpretation. This 
latter would allow one to play, on a machine, the games illustrating 
the random processes and the distributions obtained would give a fair 
idea of the solution of the original equations. Better still, the hope 
would be to obtain directly a "homomorphic image" of the behavior 
of the physical system in question. It has to be.stated that in many 
physical problems presently considered, the differential equations 
originally obtained by certain idealizations, are not, so to say, very 
sacrosanct any more. A direct study of models of the system on 
computing machines may possess a heuristic value, at least. A great 
number of problems were treated in this fashion towards the end of 
the war and in following years by von Neumann and the writer. At 
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first, the probabilistic interpretation was immediately suggested by 
the physical situation itself. Later, problems of the third class men
tioned above were studied. A theory of such mathematical models is 
still very incomplete. In particular, estimates of fluctuations and 
accuracy are not as yet developed. Here again, von Neumann con
tributed a large number of ingenious ways, for example by playing 
suitable games, of producing sequences of numbers in the given 
probability distributions. He also devised probabilistic models for 
treatment of the Boltzmann equation and important stochastic 
models for some strictly deterministic problems in hydrodynamics. 
Much of this work is scattered throughout various laboratory reports 
or is still in manuscript. One certainly hopes that in the near future, 
an organized selection will be available to the mathematical public. 

Theory of automata, probabilistic logic. An account of this work 
is given in Professor Shannon's article, Von Neumann's contributions 
to automata theory. This work, like that in game theory, has stimu
lated, during the last few years, a wide and increasingly expanding 
number of studies and seems to me to rank with his most fertile 
ideas. Here a combination of his interest in mathematical logic, com
puting machines, mathematical analysis, and the knowledge of prob
lems of mathematical physics, come to bear fruit in new construc
tions. The ideas of Turing, McCulloch, and Pitts on the representation 
of logical propositions by electrical networks or idealized nervous 
systems inspired him to propose and outline a general theory of 
automata. Its notions and terminology come from several fields— 
mathematics, electrical engineering, and neurology. Such studies now 
promise more conquests of mathematics in its ability to formalize, 
perhaps at first on an extremely simplified level, the workings of an 
organism and of the nervous system itself. 

Nuclear energy, work at Los Alamos. The discovery of the phe
nomenon of fission in uranium caused by absorption of neutrons with 
a consequent release of more neutrons came just before the outbreak 
of the Second World War. A number of physicists realized at once 
the possibility of a vast release of energy in an exponential reaction 
in a mass of uranium, and discussions started on quantitative evalua
tion of arrangements which would lead to utilization of this new 
source of energy. 

Theoretical physicists form a much smaller and more closely knit 
group than mathematicians and, in general, the interchange of re
sults and ideas is more rapid among them. Von Neumann, whose 
work in foundations of quantum theory brought him early into con
tact with most of the leading physicists, was aware of the new experi-
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mental facts and participated, from the beginning, in their specula
tions on the enormous technological possibilities latent in the phe
nomena of fission. The outbreak of war found him already engaged in 
scientific work connected with problems of defense. I t was not until 
late in 1943, however, that he was asked by Oppenheimer to visit the 
Los Alamos Laboratory as a consultant and began to participate in 
the work which was to culminate in the construction of the atomic 
bomb. 

As is now well known, the first self-sustaining nuclear chain reac
tion was established by a group of physicists headed by Fermi in 
Chicago on December 2, 1942, through the construction of a pile, 
an arrangement of uranium and a moderating substance where the 
neutrons are slowed down in order to increase their probability of 
causing further fissions. A pile forms a very large object and the time 
for the 6-folding of the number of neutrons is relatively long. The 
project established at Los Alamos had as its aim to produce a very 
fast reaction in a relatively small amount of the 235 isotope of 
uranium or plutonium, leading to an explosive release of a vast 
amount of energy. The scientific group began to assemble in late 
spring of 1943 and by fall of that year a great number of eminent 
theoretical and experimental physicists were settled there. When von 
Neumann arrived in Los Alamos, diverse methods of assembling a 
critical mass of fissionable material were being examined ; no scheme 
was a priori certain of success, one of the problems being whether a 
sufficiently fast assembly is possible before the nuclear reaction 
would lead to a mild or mediocre explosion preventing the utilization 
of most of the material. 

E. Teller remembers how Johnny arrived in Lamy (the railroad 
station nearest Los Alamos), was brought up to the "hill,^ sur
rounded at that time by great secrecy, in an official car: 

"When he arrived, the Coordinating Council was just in session. Our Director, Oppen
heimer, was reporting on the Ottawa meeting in Canada. His speech contained lots of 
references to most important people and equally important decisions, one of which affected 
us closely: We could expect the arrival of the British contingent in the near future. After 
he finished the speech he asked whether there were any questions or comments. The audi
ence was impressed and no questions were asked. Then Oppenheimer suggested that 
there might be questions on some other topics. After a second or two a deep voice {whose 
source has been lost to history) spoke, *When shall we have a shoemaker on the Hill?' 
Even though no scientific problem was discussed with Johnny at that time, he asserted 
that as of that moment he was fully familiar with the nature of Los Alamos.n 

The atmosphere of work was extremely intense at that time and 
more characteristic of university seminars than technological or engi
neering laboratories by its informality and the exploratory and, one 
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might say, abstract character of scientific discussions. I remember 
rather vividly that it was with some astonishment that I found, upon 
arriving a t Los Alamos, a milieu reminiscent of a group of mathe
maticians discussing their abstract speculations rather than of engi
neers working on a well defined practical project—discussions were 
going on informally often until late at night. Scientifically, a striking 
feature of the situation was the diversity of problems, each equally 
important for the success of the project. For example, there was the 
problem of the distribution, in space and time, of the neutrons whose 
number increases exponentially; equally important was the problem 
of following the increasing deposition of energy by fissions in the 
material of the bomb, the calculation of hydrodynamical motions in 
the explosion, the distribution of energy in the form of radiation, and 
finally, following the course of the motions of the material sur
rounding the bomb after it has lost its criticality. I t was vital to 
understand all these questions which involved very different mathe
matical problems. 

I t is impossible to detail here the contributions of von Neumann; 
I shall try to indicate some of the more important ones. Early in 1944 
a method of implosion was considered for the assembly of the fission
able material. This involves a spherical impulse given to the material, 
followed by the compression. Von Neumann, Bethe, and Teller were 
the first to recognize the advantages of this scheme. Teller told him 
about the experimental work of Neddermeyer and collaborated with 
von Neumann on working out the essential consequences of such 
spherical geometry. Von Neumann came to the conclusion that one 
could produce exceedingly great pressures by this method and it 
became clear in the discussion that great pressures would bring about 
considerable compressions as well. In order to start the implosion in a 
sufficiently symmetrical manner, the original push given by high 
explosives had to be delivered by simultaneously detonating it from 
many points. Tuck and von Neumann suggested that it be supple
mented by the use of high explosive lenses. 

We mentioned before von Neumann's ability, perhaps somewhat 
rare among mathematicians, to commune with the physicists, under
stand their language, and to transform it almost instantly into a 
mathematician's schemes and expressions. Then, after following the 
problems as such, he could translate them back into expressions in 
common use among physicists. 

The first attempts to calculate the motions resulting from an im
plosion were extremely schematic. The equations of state of the mate
rials involved were only imperfectly known, but even with crude 
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mathematical approximations one was led to equations whose solu
tion was beyond the scope of explicit analytical methods. It became 
obvious that extensive and tedious numerical work was necessary in 
order to obtain quantitatively correct results and it is in this connec
tion that computing machines appeared as a necessary aid. 

A still more complicated problem is that of the calculation of the 
characteristics of the nuclear explosion. The amount of energy 
liberated in it depends on the history of the outward motions which 
are, of course, governed by the rate of energy deposition and by the 
thermodynamic properties of the material and radiation at the very 
high temperatures which are generated. One had to be satisfied for 
the first experiment with approximate calculations; however, as men
tioned before, even the order of magnitude is not easy to estimate 
without intricate computations. After the end of the war the desire to 
economize on the material and to maximize its utilization prompted 
the need for much more precise calculations. Here again von Neu
mann's contributions to the mathematical treatment of the resulting 
physical questions were considerable. 

Already during the war, the possibilities of thermonuclear reactions 
were considered, at first only in discussions, then in preliminary cal
culations. Von Neumann participated actively as a member of an 
imaginative group which considered various schemes for making pos
sible such reactions on a large scale. The problems involved in treat
ing the conditions necessary for such a reaction and in following its 
course are even more complex mathematically than those attending 
a fission explosion (whose characteristics are indeed a prerequisite for 
following the larger problem). After one discussion in which we out
lined the course of such a calculation, von Neumann turned to me 
and said, "Probably in its execution we shall have to perform more 
elementary arithmetical steps than the total in all the computations 
performed by the human race heretofore." We noticed, however, 
that the total number of multiplications made by the school children 
of the world in the course of a few years sensibly exceeded that of 
our problem! 

Limitations of space make it impossible to give an account of the 
innumerable smaller technical contributions of von Neumann wel
comed by physicists and engineers engaged in this project. 

Von Neumann was very adept in performing dimensional estimates 
and algebraical and numerical computations in his head without 
using a pencil and paper. This ability, perhaps somewhat akin to the 
talent of playing chess blindfolded, often impressed physicists. My 
impression was that von Neumann did not visualize the physical ob-
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jects under consideration but rather treated their properties as logical 
consequences of the fundamental physical assumptions; but he was 
able to play a deductive game with these astonishingly well! 

One trait of his scientific personality, which made him very much 
liked and sought after by those engaged in applications of mathe
matical techniques, was a willingness to listen attentively even to 
questions sometimes without much scientific import, but presenting 
the combinatorial attractions of a puzzle. Many of his interlocutors 
were helped actively or else consoled by knowing that there is no 
magic in mathematics known to anyone containing easy answers to 
their problems. His unselfish willingness to be involved in perhaps 
too diverse and certainly too numerous activities where mathemati
cal insight might be useful (they are so increasingly common in tech
nology nowadays) put severe demands on his time. In the years fol
lowing the end of the Second World War, he found himself torn be
tween conflicting demands on his time almost every moment. 

Von Neumann strongly believed that the technological revolution 
initiated by the release of nuclear energy would cause more profound 
changes in human society, in particular in the development of sci
ence, than any technological discovery made in the previous history 
of the race. In one of the very few instances of talking about his own 
lucky guesses, he told me that, as a very young man, he believed that 
nuclear energy would be made available and change the order of 
human activities during his lifetime! 

He participated actively in the early speculations and deliberations 
on the possibility of controlled thermonuclear reactions. When in 1954 
he became a member of the Atomic Energy Commission, he worked 
on the technical and economical problems relating to the building 
and operation of fission reactors. In this position he also spent a great 
deal of time in the organization of studies of mathematical computing 
machines and the means to make them available to universities and 
other research centers. 

* * * 
This fragmentary account of von Neumann's diverse achievements 

and this cursory peregrination through the mathematical disciplines 
in which he left so many permanent imprints, may raise the question 
whether there was a thread of continuity throughout his work. 

As Poincaré has phrased it: "Il y a des problèmes qu'on se pose et 
des problèmes qui se posent." Now, fifty years after the great French 
mathematician formulated this indefinite distinction, the state of 
mathematics presents this division in a more acute form. Many more 
of the objects considered by mathematicians are their own free créa-
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tions, often, so to say, special generalizations of previous construc
tions. These are sometimes originally inspired by the schemata of 
physics, others evolve genetically from free mathematical creations— 
in some cases prophetically anticipating the actual patterns of physi
cal relations. Von Neumann's thought was obviously influenced by 
both tendencies. It was his desire to preserve, so far as possible, the 
connection between the pyramiding mathematical constructions and 
the increasing combinatorial complexity presented by physics and 
the natural sciences in general, a connection which seems to be grow
ing more and more elusive. 

Some of the great mathematicians of the eighteenth century, in 
particular Euler, succeeded in incorporating into the domain of 
mathematical analysis descriptions of many natural phenomena. Von 
Neumann's work attempted to cast in a similar role the mathe
matics stemming from set theory and modern algebra. This is of 
course, nowadays, a vastly more difficult undertaking. The in
finitesimal calculus and the subsequent growth of analysis through 
most of the nineteenth century led to hopes of not merely cataloguing, 
but of understanding the contents of the Pandora's box opened by 
the discoveries of physical sciences. Such hopes are now illusory, if 
only because the real number system of the Euclidean space can no 
longer claim, algebraically, or even only topologically, to be the 
unique or even the best mathematical substratum for physical 
theories. The physical ideas of the 19th century, dominated mathe
matically by differential and integral equations and the theory of 
analytic functions, have become inadequate. The new quantum 
theory requires on the analytic side a set-theoretically more general 
point of view, the primitive notions themselves involving probability 
distributions and infinite-dimensional function spaces. The al
gebraical counterpart to this involves a study of combinatorial and 
algebraic structures more general than those presented by real or 
complex numbers alone. Von Neumann's work came at a time when 
the whole complex of ideas stemming from Cantor's set theory and 
the algebraical work of Hubert, Weyl, Noether, Artin, Brauer, and 
others could be exploited for this purpose. 

Another major source from which general mathematical investiga
tions are beginning to develop is a new kind of combinatorial analysis 
stimulated by the recent fundamental researches in the biological 
sciences. Here, the lack of general method at the present time is even 
more noticeable. The problems are essentially non-linear, and of an 
extremely complex combinatorial character; it seems that many 
years of experimentation and heuristic studies will be necessary be-
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fore one can hope to achieve the insight required for decisive syn
theses. An awareness of this is what prompted von Neumann to de
vote so much of his work of the last ten years to the study and the 
construction of computing machines and to formulate a preliminary 
outline for the study of automata. 

Surveying von Neumann's work and seeing how ramified and ex
tended it is, one could say with Hubert: "One is led to ask oneself 
whether the science of mathematics will not end, as has been the 
case for a long time now for other sciences, in a subdivision of sepa
rate parts whose representatives will barely understand each other 
and whose connections will continue to diminish? I neither think so 
nor hope for this; the science of mathematics is an indivisible whole, 
an organism whose vital force has as its premise the indissolubility 
of its parts. Whatever the diversity of subjects of our science in its 
details, we are nonetheless struck by the equivalence of the logical 
procedures, the relation of ideas in the whole of science and the nu
merous analogies in its different domains . . . ,"14 Von Neumann's 
work was a contribution to this ideal of the universality and organic 
unity of mathematics. 

* * * 
Among the numerous scientific positions held by von Neumann, 

one should name his Gibbs Lectureship in the American Mathemati
cal Society (1947); he gave the American Mathematical Society 
Colloquium Lecture in 1937 and was Vanuxem Lecturer at Princeton 
University in 1953. He was president of the American Mathematical 
Society from 1951-1953. During his years as a professor at the In
stitute in Princeton, he gave lectures, too numerous to list, a t various 
learned societies and academic institutions. 

He served as a co-editor of the Annals of Mathematics in Princeton 
from 1933-1957, and of Compositio Mathematica (Amsterdam, 
Netherlands) from 1935-1957. 

The society memberships included: American Mathematical So
ciety; American Physical Society; Econometric Society; Interna
tional Statistical Institute, The Hague, Netherlands; Sigma Xi. 

He was a member of the following academies: 
Academia Nacional de Ciencias Exactas, Lima, Peru; 
Academia Nazionale dei Lincei, Rome, Italy; 
American Academy of Arts and Sciences; 
American Philosophical Society; 
Insti tute Lombardo di Scienze e Lettere, Milano, Italy; 

14 Hubert: Problèmes futurs des Mathématiques, Comptes-Rendus, 2ème Congrès 
International de Mathématiques, Paris, 1900. 
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National Academy of Sciences; 
Royal Netherlands Academy of Sciences and Letters, Amster

dam, Netherlands. 
He was awarded the following Honorary Doctors degrees: Prince

ton University, 1947; University of Pennsylvania and Harvard Uni
versity, 1950; University of Istanbul, Turkey, and University of 
Maryland, 1950, also Columbia University and the Technische 
Hochschule in Munich. 

Among the distinctions and honors received : 
Rockefeller Fellowship—1926; 
Bôcher Prize, American Mathematical Society—1937; 
Medal for Merit (Presidential Award), distinguished Civilian 

Service Award, U. S. Navy—1947; 
Medal of Freedom (Presidential Award)—1956; 
Albert Einstein Commemorative Award—1956; 
Enrico Fermi Award—1956. 

An incomplete list of scientific and organizational activities con
tains the following positions: From 1940-1957, he was a member of 
the Scientific Advisory Committee, Ballistic Research Laboratories, 
Aberdeen Proving Ground, Maryland; the Navy Bureau of Ordnance, 
Washington, D. C. from 1941-1955; consultant to Los Alamos Scien
tific Laboratory 1943-1955; also the Naval Ordnance Laboratory, 
Silver Spring, Maryland from 1947-1955; member of the Research 
and Development Board, Washington, D. C. 1949-1953; a consultant 
to the Oak Ridge National Laboratory, Oak Ridge, Tennessee 1949-
1954; member from 1950 to 1955 of the Armed Forces Special 
Weapons Project, Washington, D. C ; also in Washington a member 
of the Scientific Advisory Board, U. S. Air Force, Washington, D. C. 
1951-1957; a member of the General Advisory Committee by presi
dential appointment 1952-1954; and on the Technical Advisory Panel 
on Atomic Energy, Washington, D. C. 1953-1957; Chairman of the 
Advisory Committee on Guided Missiles (1954-1957 with Clark 
Millikan as acting chairman in 1956). 
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