## Solution of the equation $ze^z = a$

HTML articles powered by AMS MathViewer

- by E. M. Wright PDF
- Bull. Amer. Math. Soc.
**65**(1959), 89-93

## References

- Richard Bellman,
*On the existence and boundedness of solutions of non-linear differential-difference equations*, Ann. of Math. (2)**50**(1949), 347β355. MR**30106**, DOI 10.2307/1969460
2. G. Eisenstein, J. Reine Angew. Math. vol. 28 (1844) pp. 49-52.
3. L. Euler, Opera Omnia (i) vol. 15, Leipzig and Berne, 1927, pp. 268-297.
- N. D. Hayes,
*Roots of the transcendental equation associated with a certain difference-differential equation*, J. London Math. Soc.**25**(1950), 226β232. MR**36426**, DOI 10.1112/jlms/s1-25.3.226 - N. D. Hayes,
*The roots of the equation $x=(c\,\textrm {exp)} ^nx$ and the cycles of the substitution $(x|ce^x)$*, Quart. J. Math. Oxford Ser. (2)**3**(1952), 81β90. MR**48556**, DOI 10.1093/qmath/3.1.81
6. A. Hurwitz and R. Courant, Funktionentheorie, 3d ed., Berlin, 1929, pp. 141-142.
7. E. M. Lémeray, Nouv. Ann. de Math. (3) vol. 15 (1896) pp. 548-556 and vol. 16 (1896) pp. 54-61.
8. E. M. Lémeray, Proc. Edinburgh Math. Soc. vol. 16 (1897) pp. 13-35.
9. O. Polossuchin, Thesis, Zurich, 1910.
10. F. Schürer, Ber. Verh. Sachs. Akad. Wiss. Leipzig Math.-phys. Kl. vol. 64 (1912) pp. 167-236 and vol. 65 (1913) pp. 239-246.
- E. M. Wright,
*Iteration of the exponential functions*, Quart. J. Math. Oxford Ser.**18**(1947), 228β235. MR**22912**, DOI 10.1093/qmath/os-18.1.228 - E. M. Wright,
*A non-linear difference-differential equation*, J. Reine Angew. Math.**194**(1955), 66β87. MR**72363**, DOI 10.1515/crll.1955.194.66

## Additional Information

- Journal: Bull. Amer. Math. Soc.
**65**(1959), 89-93 - DOI: https://doi.org/10.1090/S0002-9904-1959-10290-1
- MathSciNet review: 0129130