ON AN IDENTITY OF BLOCK AND MARSCHAK

BY J. G. VAN DER CORPUT

Communicated by Edwin Moise, July 29, 1959

In the Bulletin of the American Mathematical Society H. D. Block and Jacob Marschak proved for each choice of the positive integers \(m \) and \(n \) with \(m \leq n \) the identity

\[
\sum_{1} \left\{ (u_{1} + u_{2} + \cdots + u_{n}) (u_{2} + u_{3} + \cdots + u_{n}) \cdots \right\}
\]

\[
= \left\{ (u_{1} + u_{2} + \cdots + u_{m}) u_{2} u_{3} \cdots u_{n} \right\}^{-1},
\]

where \(u_{1}, \cdots, u_{n} \) denote indefinite numbers and where \(\sum_{1} \) is extended over all the permutations \((s_{1}, s_{2}, \cdots, s_{n})\) of \((1, 2, \cdots, n)\) which rank 1 before each of the numbers \(2, 3, \cdots, m \).

In this paper I shall prove: If \(p, q \) and \(n \) denote integers with \(0 \leq p \leq q \leq n \) and \(n \geq 1 \), then

\[
\sum_{2} \left\{ (u_{1} + u_{2} + \cdots + u_{n}) (u_{2} + u_{3} + \cdots + u_{n}) \cdots \right\}
\]

\[
= \left\{ (u_{1} + u_{2} + \cdots + u_{q}) (u_{2} + \cdots + u_{q}) \cdots \right\}^{-1},
\]

where \(\sum_{2} \) is extended over the permutations \((s_{1}, s_{2}, \cdots, s_{n})\) of \((1, 2, \cdots, n)\) which rank 1 before \(2 \), 2 before \(3 \), \cdots, \(p-1 \) before \(p \) and finally \(p \) before each of the numbers \(p+1, p+2, \cdots, q \).

The particular case \(p = 1, q = m \) yields (1).

In the proof of (2) I treat first the case \(q = n \). Then \(\sum_{2} \) is extended over the permutations \((s_{1}, \cdots, s_{n})\) with \(s_{h} = h \) \((1 \leq h \leq p)\), where \((s_{p+1}, \cdots, s_{n})\) is an arbitrary permutation of \((p+1, \cdots, n)\). In this case we must show that

\[
\sum_{2} = \left\{ (u_{1} + \cdots + u_{n}) (u_{2} + \cdots + u_{n}) \cdots \right\}^{-1},
\]

In the case \(p = n \) the sum \(\sum_{3} \) consists of only one term namely

\[
\left\{ (u_{1} + \cdots + u_{n}) (u_{n+1} \cdots u_{n}) \right\}^{-1}.
\]

This paper is sponsored by the United States Army under Contract No. DA-11-022-ORD-2059.

H. D. Block and Jacob Marschak, *An identity in arithmetic*, Bull. Amer. Math. Soc. vol. 65 (1959) pp. 123–124. Without loss of generality we may choose \(i = 1 \) in their identity and then this identity assumes the simpler form indicated in (1).

28
(u_1 + \cdots + u_n)^{-1}. I may therefore assume that \(p \) is \(\leq n - 1 \) and that (3) has already been proved with \(p \) replaced by \(p + 1 \). For each integer \(h \geq p + 1 \) and \(\leq n \) the contribution to \(\sum_2^2 \) of the permutations \((s_{p+1}, \ldots, s_n)\) with \(s_{p+1} = h \) is according to the induction hypothesis equal to

\[
u_h \{(u_1 + \cdots + u_n)(u_2 + \cdots + u_n) \cdots (u_{p+1} + \cdots + u_n)u_{p+1} \cdots u_n \}^{-1},
\]

so that

\[
\sum_2 = \{(u_1 + \cdots + u_n)(u_2 + \cdots + u_n) \cdots (u_{p+1} + \cdots + u_n)u_{p+1} \cdots u_n \}^{-1} \sum_{h=p+1}^n u_h,
\]

which gives the required result (3).

Finally we treat the case \(p \leq q \leq n - 1 \) and we may assume that (2) has already been proved with \(p \) replaced by \(p + 1 \). We must prove that

\[
u_{p+1}u_{p+2} \cdots u_n \sum_2 = [p + 1, p + 2, \ldots, q]/[1, 2, \ldots, q],
\]

where

\[
[a_1, a_2, \cdots, a_t] = (u_{a_1} + u_{a_2} + \cdots + u_{a_1})(u_{a_2} + u_{a_3} + \cdots + u_{a_2})
\cdots (u_{a_{t-1}} + u_{a_t})u_{a_t};
\]

the right hand side means 1 if \(t = 0 \).

By the induction hypothesis the contribution to \(u_{p+1} \cdots u_n \sum_2 \) of the permutations \((s_1, s_2, \cdots, s_n)\) which rank \(p \) before \(q+1 \) is equal to \([p + 1, \ldots, q + 1]/[1, \ldots, q + 1]\); the contribution to \(u_{p+1} \cdots u_n \sum_2 \) of the permutations which rank \(q+1 \) between \(h-1 \) and \(h \) is for each integer \(h \) with \(2 \leq h \leq p \) equal to

\[
u_{q+1}[p + 1, \cdots, q]/[1, \cdots, h - 1, q + 1, h, \cdots, q]
\]

and finally the contribution to \(u_{p+1} \cdots u_n \sum_2 \) of the permutations which rank \(q+1 \) before 1 is equal to

\[
u_{q+1}[p + 1, \cdots, q]/[q + 1, 1, \cdots, q].
\]

In this way we find

\[
u_{p+1}u_{p+2} \cdots u_n \sum_2 = \frac{[p + 1, \cdots, q + 1]}{[1, \cdots, q + 1]}
\]

\[
+ \nu_{q+1} \sum_{h=1}^p \frac{[p + 1, \cdots, q]}{[1, \cdots, h - 1, q + 1, h, \cdots, q]}.
\]
It is therefore sufficient to prove that
\[
\frac{[p + 1, \ldots, g + 1]}{[1, \ldots, q + 1]} + u_{q+1} \sum_{h=1}^{p} \frac{[p + 1, \ldots, q]}{[1, \ldots, h - 1, q + 1, h, \ldots, q]}
= \frac{[p + 1, \ldots, q]}{[1, \ldots, q]}.
\]

This identity is obvious for \(p = 0 \), so that I may assume that \(p \) is \(\geq 1 \) and that (5) has already been proved with \(p \) replaced by \(p - 1 \).

The term with \(h = 1 \) occurring on the left hand side of (5) is equal to
\[
\frac{[p + 1, \ldots, q]}{(u_1 + \cdots + u_q)[2, \ldots, q]},
\]
so that this term is a rational function of \(u_1 \) which possesses at \(u_1 = -(u_2 + \cdots + u_{q+1}) \) a simple pole with residue
\[-\frac{[p + 1, \ldots, q]}{[2, \ldots, q]},\]
and at \(u_1 = -(u_2 + \cdots + u_q) \) a simple pole with residue
\[-\frac{[p + 1, \ldots, q]}{[2, \ldots, q]}.
\]

The left hand side of (5) is therefore a rational function of \(u_1 \) which possesses at \(u_1 = -(u_2 + \cdots + u_{q+1}) \) a simple pole with residue
\[
\frac{[p + 1, \ldots, q + 1]}{[2, \ldots, q + 1]} + u_{q+1} \sum_{h=1}^{p} \frac{[p + 1, \ldots, q]}{[2, \ldots, h - 1, q + 1, h, \ldots, q]}
= \frac{[p + 1, \ldots, q]}{[2, \ldots, q]}.
\]

This expression assumes, if we replace \(u_2, u_3, \ldots, u_{q+1} \) by \(u_1, u_2, \ldots, u_q \), the form
\[
\frac{[p, \ldots, q]}{[1, \ldots, q]} + u_q \sum_{h=1}^{p-1} \frac{[p, \ldots, q - 1]}{[1, \ldots, h - 1, q, h, \ldots, q - 1]}
= \frac{[p, \ldots, q - 1]}{[1, \ldots, q - 1]},
\]
which is equal to zero according to formula (5) applied with \(p \) and \(q \) replaced by \(p - 1 \) and \(q - 1 \). Consequently the left hand side of (5) is a rational function of \(u_1 \) which has at \(u_1 = -(u_2 + \cdots + u_{q+1}) \) a simple pole with residue 0, so that this function is analytic at that
point. This function has at \(u_1 = -(u_2 + \cdots + u_q) \) a simple pole with residue \([p+1, \cdots, q]/[2, \cdots, q] \) and this is also the case with the function occurring on the right hand side of (5). All the terms occurring in (5) are analytic functions of \(u_1 \), apart of the points \(u_1 = -(u_2 + \cdots + u_{q+1}) \) and \(u_1 = -(u_2 + \cdots + u_q) \), so that the difference between the two sides of (5) is a rational function of \(u_1 \) without poles which tends for \(u_1 \to \infty \) to zero; this difference is therefore identically equal to zero. This completes the proof.

Mathematics Research Center, United States Army, Madison, Wis.