CLOSED IDEALS IN GROUP ALGEBRAS

BY WALTER RUDIN

Communicated October 26, 1959

Let \(A(G) \) be the set of all Fourier transforms on the locally compact abelian group \(G \), i.e., the set of all \(f \) of the form

\[
f(x) = \int_{\Gamma} (x, \gamma) F(\gamma) d\gamma \quad (x \in G, F \in L^1(\Gamma)),
\]

where \(\Gamma \) is the dual group of \(G \) and \((x, \gamma)\) is the value of the character \(\gamma \) at the point \(x \). With the norm

\[
\|f\| = \int_{\Gamma} |F(\gamma)| \, d\gamma
\]

\(A(G) \) is a commutative Banach algebra, and \(G \) is its maximal ideal space.

If \(I \) is a closed ideal in \(A(G) \), let \(Z(I) \) be the set of all \(x \in G \) such that \(f(x) = 0 \) for every \(f \in I \). Malliavin [3; 4; 5] has recently solved a problem of long standing by proving that in every nondiscrete \(G \) there is a closed set \(E \) such that \(E = Z(I_1) = Z(I_2) \) for two distinct closed ideals \(I_1 \) and \(I_2 \) in \(A(G) \). Combined with an older result of Helson [1] this implies that there are infinitely many closed ideals \(I \) in \(A(G) \) with \(Z(I) = E \).

It is the purpose of this note to point out that Malliavin’s construction for compact \(G \) (he reduced the general case to this) yields an even more specific result:

Theorem. Suppose \(G \) is an infinite compact abelian group. There is a real \(\gamma \in A(G) \) such that the closed ideals \(I_n \) generated by the powers \(f^n \) \((n = 1, 2, 3, \ldots)\) are all distinct.

We sketch the proof. If \(g \in A(G) \) and \(u \) is a real number, we define \(a_\gamma(u) \) by

\[
e^{iug(x)} = \sum_{\gamma \in \Gamma} a_\gamma(u) \cdot (x, \gamma) \quad (x \in G).
\]

Malliavin [5] constructed a real \(g \in A(G) \) for which

\[
|a_\gamma(u)| < \exp(-C|u|^{1/2}) \quad (\gamma \in \Gamma),
\]

where \(C > 0 \) is independent of \(\gamma \). (The exponent \(1/2 \) in (2) could be

\[\text{81}\]

1 Research Fellow of the Alfred P. Sloan Foundation.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
replaced by any \(\lambda < 1 \), but not by 1. Kahane's construction [2] should also be mentioned in this connection.) By (2),

\[
\sup_{\gamma \in \Gamma} \int_{-\infty}^{\infty} |a_\gamma(u)u^n| \, du = M_n < \infty \quad (n = 0, 1, 2, \cdots).
\]

The mapping

\[
\phi \rightarrow \int_{\mathcal{G}} \phi(g(x))(-x, \gamma) \, dx
\]

is, for each \(\gamma \), a bounded linear functional in the space of all continuous functions \(\phi \) on the range of \(g \), and hence there are measures \(\mu_\gamma \) on the line, with compact support, such that

\[
\int_{\mathcal{G}} \phi(g(x))(-x, \gamma) \, dx = \int_{-\infty}^{\infty} \phi(t) \, d\mu_\gamma(t).
\]

Taking \(\phi(t) = e^{iut} \), we see that \(a_\gamma(u) \) is the Fourier-Stieltjes transform of \(\mu_\gamma \), and (3) implies that \(d\mu_\gamma(t) = m_\gamma(t) \, dt \), where each \(m_\gamma \) is infinitely differentiable and

\[
|m_\gamma^{(n)}(t)| \leq M_n \quad (\gamma \in \Gamma, t \text{ real}).
\]

Since \(a_0(0) = 1 \), \(m_0 \neq 0 \), and there is a real number \(\alpha \) such that \(m_0(\alpha) \neq 0 \).

Put \(f(x) = g(x) - \alpha \). By (6), the expressions

\[
T_n h = (-1)^n \sum_{\gamma \in \Gamma} H(\gamma)m_\gamma^{(n)}(\alpha) \quad (n = 1, 2, 3, \cdots),
\]

where \(h(x) = \sum H(\gamma)(x, \gamma) \), define bounded linear functionals on \(\mathcal{A}(\mathcal{G}) \). The following two facts show that \(T_n \) annihilates \(I_{n+1} \) but not \(I_n \), and hence establish the theorem:

(A) \(T_nf^n \neq 0 \).

(B) If \(h(x) = (x, \gamma_0)f^{n+1}(x) \), for any \(\gamma_0 \in \Gamma \), then \(T_nh = 0 \).

(A) and (B) are proved by evaluating (7) for all \(h \) of the form

\[
h(x) = P(g(x))(x, -\gamma_0) \quad (\gamma_0 \in \Gamma)
\]

where \(P \) is a polynomial. Set

\[
\epsilon_{j,n}(\gamma) = \int_{-\infty}^{\infty} W_j^{(n)}(t)m_\gamma(t) \, dt,
\]

where \(\{W_j\} \) is a sequence of non-negative infinitely differentiable functions which vanish outside \((\alpha - 1/j, \alpha + 1/j) \), such that \(\int_{-\infty}^{\infty} W_j(t) \, dt \)
Integrating (9) by parts \(n \) times, we see that \(|c_{j,n}(\gamma)| \leq M_n \) and

\[
\lim_j c_{j,n}(\gamma) = (-1)^n m_{\gamma}(\alpha).
\]

Hence (5) implies, if \(h \) is of the form (8), that

\[
T_n h = \lim_j \sum_{\gamma} H(\gamma) \int_{-\infty}^{\infty} W_j^{(n)}(t)m_{\gamma}(t)dt
\]

\[
= \lim_j \sum_{\gamma} H(\gamma) \int_{\mathbb{G}} W_j^{(n)}(g(x))(x, \gamma)dx
\]

\[
= \lim_j \int_{\mathbb{G}} W_j^{(n)}(g(x))P(g(x))(x, -\gamma_0)dx
\]

\[
= \lim_j \int_{-\infty}^{\infty} W_j^{(n)}(t)P(t)m_{\gamma_0}(t)dt
\]

\[
= (-1)^n \lim_j \int_{-\infty}^{\infty} W_j(t) \left(\frac{d}{dt} \right)^n [P(t)m_{\gamma_0}(t)]dt
\]

\[
= (-1)^n \left(\frac{d}{dt} \right)^n [P(t)m_{\gamma_0}(t)]_{t=\alpha}.
\]

Taking \(h = (g - \alpha)^n \), it follows that \(T_n h \) is the \(n \)th derivative of \((-1)^n (t - \alpha)^n m_{\gamma_0}(t)\), evaluated at \(t = \alpha \), and this is \((-1)^n n! m_{\gamma_0}(\alpha) \neq 0\). This proves (A).

Taking \(h(x) = (x, \gamma_0)(g(x) - \alpha)^{n+1} \), we see that \(T_n h \) is the \(n \)th derivative of \((-1)^n (t - \alpha)^{n+1} m_{\gamma_0}(t)\), evaluated at \(t = \alpha \), which is 0. This proves (B).

References

University of Wisconsin