A CLASS OF GEOMETRIC LATTICES

K. ROGERS AND E. G. STRAUS

Communicated by E. F. Beckenbach, December 26, 1959

1. Introduction. By an \(n \)-dimensional lattice \(\Lambda \) we mean, as usual, an additive subgroup with \(n \) linearly independent generators of the vectors in Euclidean \(n \)-space, \(\mathbb{R}^n \). If we denote by \(\mathbb{Z}^n \) the lattice of vectors with integral components, then \(\Lambda \) is the image of \(\mathbb{Z}^n \) under a nonsingular linear transformation:

\[
\Lambda = \{ Au \mid u \in \mathbb{Z}^n \}, \quad \det A \neq 0.
\]

The matrices mapping \(\mathbb{Z}^n \) onto \(\Lambda \) constitute a coset \(AU \) of the subgroup of all integral unimodular matrices, and so \(\det \Lambda = |\det A| \) is well-defined. It is convenient to use the same name \(\Lambda \) for the point-lattice of all points \(P \) such that \(OP \) is in \(\Lambda \).

Minkowski [2] showed that every lattice of determinant one contains a point other than the origin 0 in the cube

\[
\{ (x_1, \cdots, x_n) \mid |x_i| \leq 1, \ i = 1, \cdots, n \},
\]

and that the same holds if any \(n-1 \) of the signs are replaced by strict inequality. Those unimodular lattices, such as \(\mathbb{Z}^n \), which have only the origin in common with the open cube shall be called critical, as shall the corresponding matrices. Minkowski conjectured, and Hajos [1] proved in 1938, that a critical lattice must contain one of the points \((\delta_{n1}, \cdots, \delta_{nn}), i = 1, \cdots, n \). If \(\Lambda \) is critical then so is any matrix obtained from it by permuting rows and post-multiplication by integral unimodular matrices: such matrices will be called equivalent to \(\Lambda \). An induction argument shows that Hajos’ theorem is the same as the assertion:

\(\Lambda \) is critical if and only if it is equivalent to a matrix with ones on the diagonal and all zeros above.

Siegel [3] tried to prove Minkowski’s conjecture by showing that, if \(\Lambda \) is critical, then each point other than 0 of the lattice corresponding to \(\Lambda \) has at least one coordinate in \(\mathbb{Z}^* \), the set of nonzero integers. If we consider the set of matrices \(\Lambda \) defined by the property

\[
(P) \quad u \in \mathbb{Z}^n, \quad u \neq 0 \Rightarrow Au \text{ has a component in } \mathbb{Z}^*,
\]

then Hajos’ theorem would follow from Siegel’s result, if it were true that every \(\Lambda \) with property (P) has an integral row. For in that case we could prove by induction on \(n \) that \(\Lambda \) is equivalent to a triangular matrix with zeros above the diagonal and positive integers on the
diagonal. Thus if $|\det A| = 1$, then the diagonal elements must be 1.

Conversely, since every A with property (P) and $|\det A| = 1$ is clearly critical, Hajos' theorem shows that the combination of (P) with $|\det A| = 1$ does imply that A has an integral row.

Unfortunately property (P) alone does not suffice for $n \geq 5$ as is shown by the example

$$A = \begin{bmatrix} 1/3 & 0 & 0 & 0 & 0 \\ 0 & 1/3 & 0 & 0 & 0 \\ 1/2 & 3/2 & 3 & 0 & 0 \\ 1 & 3/2 & 0 & 3 & 0 \\ 3/2 & 1 & 0 & 0 & 3 \end{bmatrix}.$$

Here A has property (P) but no row is integral. However we were able to show that property (P) does imply that $\det A \in \mathbb{Z}^*$ and to obtain various generalizations of that result.

2. The special case of the main theorem enunciated at the end of the introduction, when A is rational, is included in:

Theorem I. Let K be an algebraic number field of class-number one, and let J be its ring of integers. If an n-by-n matrix A over K has the property

(P) $\mathbf{u} \in J^n$, $\mathbf{u} \neq \mathbf{0} \Rightarrow A\mathbf{u}$ has a component in J^*,

then $\det A \in J^*$.

Proof. If A has property (P) then $\det A \neq 0$, so we only have to show that $\det A \in J$. The theorem being trivial for $n = 1$, we use induction. Take an A with (P) and assume that $\det A$ is not in J. We shall deduce the existence of an A with (P) such that $\det A = 1/q$, where q is a prime of J; and then a contradiction follows from a pseudo-analogue of Minkowski's theorem, which we shall prove.

Lemma 1. If there is an A with (P) such that $\det A$ is not in J, then there exists A_1 with (P) such that $\det A_1 = a/q$, where $a \in J$ and q is a prime of J which does not divide a.

Proof. Since J has unique factorization into primes and since $\det A$ is not integral, we have $\det A = a/qb$, where a, b, q are in J, q is a prime element, and $(a, qb) = J$. Multiplying the first row of A by b gives a matrix A_1 with (P) such that $\det A_1 = a/q$, as required. It is easy to remove from each row of A any common denominator prime to q without affecting (P) or the fact that the determinant has
denominator \(q \). Thus we may assume that: (i) \(A \) has property (P),
(ii) \(\det A = a/q \), where \(q \) is a prime not dividing \(a \), (iii) some power of \(q \) is a denominator for \(A \).

Lemma 2. If there is an \(A \) with properties (i), (ii) and (iii), then there exists an \(A \) with (P) such that \(\det A = 1/q \).

Proof. Since \(J \) has only principal ideals, we can find an integral unimodular matrix \(U \) such that \(AU \) is triangular. By the properties of \(A \) we may write the diagonal elements of the new \(A \) as
\[
a_{ii} = a_i q^{b_i}, \quad a = \prod a_i, \quad \sum b_i = -1.
\]
Multiplying a column or a row of \(A \) by a non-zero integer does not affect (P). Hence, if \(A' \) is obtained from \(A \) by multiplying the first \(n-1 \) columns by \(a_n \), then \(A' \) has (P) and only powers of \(q \) occur in the denominators in \(A' \). Since \(a_n \) is prime to \(q \), we get a matrix \(A'' \) with (P) when we divide each row of \(A' \) by \(a_n \). The net result is that \(a_{ij}' = a_{ij} \) if \((i, j) \neq (n, n) \), \(a_{nn}' = q^{b_n} \). Similarly we can multiply the first \(n-2 \) columns by \(a_{n-1} \) and then divide the first \(n-1 \) rows by \(a_{n-1} \), and so on. We end up with the matrix

\[
A^* = \begin{pmatrix}
q^{b_1} & 0 & \cdots & 0 \\
a_{21} & q^{b_2} & 0 & \cdots & 0 \\
a_{31} & \cdots & \cdots & \cdots & \cdots \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
a_{n-1} & \cdots & a_{n-1}a_{n1} & \cdots & q^{b_n}
\end{pmatrix}
\]

which has property (P) and determinant \(q^{2b_1} = q^{-1} \), as required.

Since \(| \text{norm} \ q^{-1} | < 1 \), the desired contradiction follows from the next theorem.

Theorem II. If \(A \) is an \(n \times n \) matrix over \(K \) such that \(0 < | \text{norm} \ (\det A) | < 1 \), then there exists \(\alpha \neq 0 \) in \(J^* \) such that \(A\alpha \) has no component in \(J^* \).

Proof. Let \(d_i \) be a common denominator for the elements of the \(i \)th row of \(A \), and let \(A_1 \) denote the matrix obtained by multiplying each row of \(A \) by its \(d_i \). Then

\[
0 < | \text{norm} \ (\det A_1) | = \left| \prod_i \text{norm} \ d_i \cdot \text{norm} \ (\det A) \right| < \left| \prod_i \text{norm} \ d_i \right| .
\]

Hence it is sufficient to prove:
LEMMA 3. If B is an n-by-n matrix over J such that $0 < |\text{norm} \ (\det B)| < \prod \text{norm } d_i$, where the $d_i \in J$, then there exists a $u \neq 0$ in J^n such that $Bu = v$, where $v_i = 0$ or $d_i | v_i$, for each i.

PROOF. Rado [4] has given a proof of Minkowski's theorem on linear forms which can easily be generalised to prove this lemma. We may assume B has been put in the form of a triangular matrix, with zeros above the diagonal and elements a_1, \ldots, a_n on the diagonal. Hence $0 < |\prod_{i=1}^n \text{norm } a_i| < |\prod \text{norm } d_i|$. Let α_i, δ_i run over complete sets of residues mod a_i and mod d_i, respectively. Then the number of vectors α is $|\prod \text{norm } a_i|$, and the number of δ is $|\prod \text{norm } d_i|$. Thus, there are more vectors δ than α. Now we assert that for given δ there is one and only one α such that the equation

$$Bu = \delta + \alpha$$

is solvable for $u \in J^n$. For $n = 1$, the equation is $a_1 u = \delta_1 + \alpha_1$; and for given δ_1 this is solvable with integral u if and only if α_1 is in a certain residue class mod a_1, hence for one and only one α_1. Assuming the assertion true for $n-1$, we know that the first $n-1$ equations are solvable, for given $\delta_1, \ldots, \delta_{n-1}$, with integral u_1, \ldots, u_{n-1} for one and only one $(\alpha_1, \ldots, \alpha_{n-1})$. Finally, for given δ_n, the equation

$$(b_{n1} u_1 + \cdots + b_{nn-1} u_{n-1}) + a_n u_n = \delta_n + \alpha_n$$

is solvable with integral u_n for one and only one α_n, as in the case $n = 1$.

Since there are more δ than α, we can find distinct δ, δ' and some α such that $Bu = \delta + \alpha$ and $Bu' = \delta' + \alpha$, where u and u' are in J^n. Since $\delta \neq \delta'$, therefore $u - u' \neq 0$ and $B(u - u') = \delta - \delta'$. Now δ_i, δ'_i are either equal or in distinct residue classes mod d_i; hence $\delta_i - \delta'_i$ is either zero or indivisible by d_i. This proves the lemma, with $v = \delta - \delta'$, and also completes the proofs of Theorems I and II.

3. Generalizations. Theorem I holds without the restriction that the elements of A lie in K.

LEMMA 4. Let K be any field with at least n elements, and let A be an n-by-n matrix over some K-module, such that

$$(P')_n \quad u \in K^n, \quad u \neq 0 \Rightarrow Au \text{ has a component in } K^*.$$

Then some row of A consists of elements of K, not all zero, and A is equivalent, under interchange of rows and right-multiplication by a non-singular matrix over K, to a triangular matrix whose diagonal elements are in K^*.
PROOF. Since the lemma is true for \(n = 1 \), take \(n \geq 2 \). If we write \(L_i = \{ u | u \in K^n, (A u)_i \in K \} \), then \(L_i \) is a subspace of \(K^n \), and \(L_i = K^n \) if the \(i \)th row of \(A \) is zero, an a priori possibility. Condition \((P')_n\) shows that \(K^n \) is the union of the \(L_i \) which correspond to a nonzero row of \(A \). If one of these \(L_i = K^n \), then the \(i \)th row of \(A \) is nonzero and all its elements are in \(K \). Otherwise, we must have \(K^n \) equal to a union of at most \(n \) proper subspaces. We now show that this is impossible when \(\#(K) \leq n \). Suppose we have reduced down to the case \(K^n = L_1 \cup L_2 \cdots \cup L_m \), with \(m \leq n \) and minimal. Hence there exist \(u, v \) in \(K^n \) such that \(u \) is not in \(L_1 \cup L_2 \cdots \cup L_n \) and \(v \) is not in \(L_i \). By intersecting each side of the above equation with the plane \(K u + K v \), we find that the plane equals the union of at most \(n \) lines through the origin. This is clearly false if \(K \) is an infinite field; and in the case \(q = \#(K) \), the total number of points would be \(q^2 = m(q - 1) + 1 \), hence \(m = q + 1 \), in contradiction to \(q^n \leq m \).

We can now switch the row whose elements are in \(K \) to the first row and then by linear combinations of columns with coefficients from \(K \) reduce \(A \) to the form

\[
\begin{bmatrix}
 a_1 & 0 & \cdots & 0 \\
 \vdots & & & B \\
\end{bmatrix}
\]

where \(a_1 \in K^* \). Since \(B \) has property \((P')_{n-1}\) we can now proceed by induction to prove the last part of the lemma.

Corollary. If the field \(K \) in Lemma 4 is an algebraic number field of class-number one, then property \((P')_n\) implies the equivalence of \(A \) to a triangular matrix with diagonal elements in \(K^* \) by switching of rows and right-multiplication by a unimodular matrix over \(J \), the integers of \(K \).

Proof. We again switch the row with elements in \(K \) to the first row. Since the class-number is one, we can form a linear combination of the columns with coefficients in \(J \) to give a new first column such that in the new matrix \(a_{1i} \) divides all terms in the first row, i.e. \(a_{1i} \in a_{11} J \), \(i = 1, 2, \ldots, n \). Then by subtracting integral multiples of the first column from other columns we can reduce \(a_{1i} \) to 0 for \(i = 2, \ldots, n \). The induction proceeds as before.

Lemma 5. If \(K \) is the field of Theorem I, \(A \) an \(n \)-by-\(n \) matrix over some \(K \)-module, \(K_i \), and \(A \) has property \((P)\), then there is a matrix \(A' \) over \(K \) with property \((P)\) such that \(\det A = \det A' \).

Proof. Since \((P)\) implies \((P')\), we can triangularize \(A \), as in the
corollary. We can regard A as being over the K-module obtained by adjoining the a_{ij} to K, say K'. If $1, \xi_1, \cdots, \xi_N$ be a basis for K' over K, then

$$A = A' + A_1\xi_1 + \cdots + A_N\xi_N,$$

say, where A' and the A_i are over K, all are triangular, the A_i having all zeros on the diagonal, while A' coincides with A on the diagonal. Hence $\det A = \det A'$. Finally, since

$$Au = A'u + \sum_{i=1}^{N} \xi_i(A_iu),$$

it is clear that A' also has property (P).

We have thus proved the desired generalization:

Theorem I'. Theorem I remains valid under the hypothesis that the matrix A is over some K-module.

In particular, if A is over the reals and transforms every nonzero integer vector into a vector with at least one component in \mathbb{Z}^*, then $\det A$ is in \mathbb{Z}^*.

References

University of California, Los Angeles