A CHARACTERIZATION OF THE ALGEBRA OF ALL CONTINUOUS FUNCTIONS ON A COMPACT HAUSDORFF SPACE

BY YITZHAK KATZNELSON

Communicated by Walter Rudin, March 23, 1960

This note is a complement to [1]. We consider a commutative, semi-simple and self-adjoint Banach algebra B and assume that B has a unit element and is regular. By \mathcal{M} we denote the space of maximal ideals of B and, applying the Gelfand representation, we consider B as an algebra of continuous functions defined on \mathcal{M}. It is obvious that if B is $C(\mathcal{M})$ (the algebra of all the continuous functions on \mathcal{M}) the idempotents in any quotient algebra of B are always bounded. We prove here that this property characterizes $C(\mathcal{M})$ and give an application of this result.

Lemma 1. Suppose that there exist constants K and K_1, $K_1<1$ such that to any real, (resp, non-negative) function $f \in C(\mathcal{M})$ there exists an element $f_i \in B$ such that $\|f_i\| \leq K \sup_{M \in \mathcal{M}} |f(M)|$, $f - f_i$ is real (non-negative) and

$$\sup_{M \in \mathcal{M}} |f(M) - f_i(M)| < K_1 \sup_{M \in \mathcal{M}} |f(M)|;$$

then $B = C(\mathcal{M})$ and for any $f \in B$ $\|f\| \leq 4K(1-K_1)^{-1} \sup_{M \in \mathcal{M}} |f(M)|$.

Proof. Define by induction $f_n = (f - \sum_{i=1}^{n-1} f_i)_i$; then $f = \sum_i f_n$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Lemma 2. Suppose that there exists a constant K_2 such that if h is an idempotent in any quotient algebra of B, $\|h\| < K_2$; then $B = C(\mathcal{W})$.

Proof. The condition imposed in the statement of the lemma means that given two disjoint closed sets in \mathcal{W}, there is an element $h \in B$ such that $h(M)$ is 1 on one set, 0 on the other set and $\|h\|\leq K_2$. We may also assume that h is non-negative since we may replace it by $|h|^2$, taking, if necessary, a bigger K_2.

Let f be a non-negative function in $C(\mathcal{W})$, define:

$$P_1 = \{ M; f(M) \geq \left(1 - \frac{1}{3K_2}\right) \text{Sup} f \},$$
$$P_2 = \{ M; f(M) \leq \frac{1}{2} \text{Sup} f \},$$

and let $h(M)$ be a non-negative element in B, of norm $\leq K_2$ which is identically 1 on P_1 and vanishes on P_2. $f_1(M) = (2K_2)^{-1} \text{Sup} f \cdot h(M)$ has the following properties: $\|f_1\| \leq 1/2 \text{Sup} f$, $f - f_1$ is non-negative and $\text{Sup} (f - f_2) < (1 - (1/3K_2)) \text{Sup} f$ and the lemma follows from Lemma 1 with $K = 1/2$ and $K_1 = 1 - (1/3K_2)$.

Definition 1. $B(P)$, where P is closed in \mathcal{W}, is the algebra of restrictions of B to P or, equivalently, the quotient algebra of B by the kernel of P.

Definition 2. We say that B is bounded in a set $V \subseteq \mathcal{W}$ if there exists a constant $K = K(V)$ such that whenever h is an idempotent in $B(P)$ with $P \subseteq V$, $\|h\| < K(V)$.

Lemma 3. Let B be bounded in V_1 and in V_2 where V_1 and V_2 are open in \mathcal{W}. Then B is bounded in every closed subset of $V_1 \cup V_2$.

Proof. Let W be a closed subset of $V_1 \cup V_2$. We may assume $W = \mathcal{W}$ (since we can confine our attention to $B(W)$ instead of B). There exist open sets W_1, W_2 satisfying: $W_j \subseteq V_j$; $W_1 \cup W_2 = \mathcal{W}$. Since B is regular it contains a function ϕ,

$$\phi(M) = \begin{cases} 0 & M \in W_1, \\ 1 & M \in W_2. \end{cases}$$

If P is closed in \mathcal{W}, $P = (P \cap \overline{W}_1) \cup (P \cap \overline{W}_2)$ and every idempotent in $B(P)$ can be obtained as $\phi h_1 + (1 - \phi) h_2$ where h_i is an idempotent in $B(P \cap \overline{W}_i)$ and the lemma follows.

Definition 3. B is bounded at a maximal ideal M if there is a neighborhood V of M such that B is bounded in V.

Lemma 4. Let P be compact in \mathcal{W}; if B is bounded at every $M \in P$, there exists an open $V \supseteq P$ such that B is bounded in V.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
This is an obvious consequence of Lemma 3.

Lemma 5. If the idempotents of any quotient algebra of B are bounded, there is at most a finite number of points in \mathbb{M} at which B is not bounded.

Proof. If there were infinitely many there would exist a sequence $\{M_j\}_{j=1}^\infty$ with disjoint neighborhoods V_j such that B would not be bounded in V_j. There would be a closed $P_j \subseteq V_j$ such that $B(P_j)$ would contain an idempotent of norm $\geq j$.

If $P = \bigcup P_j$ then $B(\overline{P})$ would not have its idempotents bounded.

The preceding proof yields actually more. We see that under the conditions of Lemma 5, there exists, for every family of disjoint open sets $\{V_\alpha\}$, a constant K such that $K(V_\alpha) \leq K$ for all but a finite number of α's.

Let us now show that, under the condition of Lemma 5, B is bounded at every $M \subseteq \mathbb{M}$. We may obviously assume that there is only one point "in doubt" and denote it by M_0.

There is a neighborhood V of M_0 and a constant K such that every idempotent in $B(P)$, where $P \subseteq V$ and has M_0 as an isolated point, has norm less than K. (Use the same argument as in the proof of Lemma 5.) Using Lemmas 3, 4 and the assumption that M_0 was the only point at which B was not known to be bounded we see that we may take $V = \mathbb{M}$. For every closed P that has M_0 as an isolated point $B(P) = C(P)$ (Lemma 2) and there is a constant A, independent of P, such that the norm in $B(P)$ is bounded by A times the Sup norm. This implies [1, the last lemma] $B = C(\mathbb{M})$ and we thus proved

Theorem. If the idempotents of any quotient algebra of B are bounded, $B = C(\mathbb{M})$.

Corollary (For Terminology see [1]). If there is a function $F(x)$ defined for $-1 < x < 1$ that operates in B and such that

$$F(0) = 0, \quad \lim_{x \to 0} x^{-1}F(x) = \infty.$$

Then $B = C(\mathbb{M})$.

Proof. Use [1, Theorem 1] and the fact that F operates also in any quotient algebra of B.

Reference

University of California,
Berkeley, California