Matrices of rational integers
HTML articles powered by AMS MathViewer
- by Olga Taussky PDF
- Bull. Amer. Math. Soc. 66 (1960), 327-345
References
- R. C. Bose, Mathematical theory of the symmetrical factorial design, Sankhyā 8 (1947), 107–166. MR 26781
- R. C. Bose, S. S. Shrikhande, and E. T. Parker, Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler’s conjecture, Canadian J. Math. 12 (1960), 189–203. MR 122729, DOI 10.4153/CJM-1960-016-5
- R. H. Bruck and H. J. Ryser, The nonexistence of certain finite projective planes, Canad. J. Math. 1 (1949), 88–93. MR 27520, DOI 10.4153/cjm-1949-009-2
- S. Chowla and H. J. Ryser, Combinatorial problems, Canad. J. Math. 2 (1950), 93–99. MR 32551, DOI 10.4153/cjm-1950-009-8 4. J. H. Curtiss, editor, Numerical analysis, Proceedings of the Sixth Symposium in Applied Mathematics, New York, 1956. 5. R. E. Gomory, An algorithm for integer solutions to linear programs, Princeton-IBM Math. Research Project, Technical Report 1, 1958. 6. J. Hadamard, Résolution d’une question relative aux déterminants, Bull. Sci. Math. (2) vol. 17 (1893) pp. 240-246.
- Marshall Hall Jr., Uniqueness of the projective plane with $57$ points, Proc. Amer. Math. Soc. 4 (1953), 912–916. MR 58986, DOI 10.1090/S0002-9939-1953-0058986-4
- Marshall Hall Jr., Projective planes and related topics, California Institute of Technology, Pasadena, California, 1954. MR 0071036
- Marshall Hall Jr., J. Dean Swift, and Robert J. Walker, Uniqueness of the projective plane of order eight, Math. Tables Aids Comput. 10 (1956), 186–194. MR 84142, DOI 10.1090/S0025-5718-1956-0084142-0
- A. J. Hoffman and J. B. Kruskal, Integral boundary points of convex polyhedra, Linear inequalities and related systems, Annals of Mathematics Studies, no. 38, Princeton University Press, Princeton, N.J., 1956, pp. 223–246. MR 0085148
- A. J. Hoffman, M. Newman, E. G. Straus, and O. Taussky, On the number of absolute points of a correlation, Pacific J. Math. 6 (1956), 83–96. MR 80072, DOI 10.2140/pjm.1956.6.83 12. H. W. Kuhn and A. W. Tucker, editors, Annals of Mathematics Studies, no. 38, Princeton, 1956.
- Henry B. Mann, On orthogonal Latin squares, Bull. Amer. Math. Soc. 50 (1944), 249–257. MR 10401, DOI 10.1090/S0002-9904-1944-08127-5
- T. S. Motzkin, The assignment problem, Proceedings of Symposia in Applied Mathematics. Vol. VI. Numerical analysis, McGraw-Hill Book Co., Inc., New York, for the American Mathematical Society, Providence, R.I., 1956, pp. 109–125. MR 0090480 15. R. E. A. C. Paley, On orthogonal matrices, J. Math. Phys. vol. 12 (1933) pp. 311-320.
- H. J. Ryser, Matrices with integer elements in combinatorial investigations, Amer. J. Math. 74 (1952), 769–773. MR 50548, DOI 10.2307/2372224
- H. J. Ryser, Geometries and incidence matrices, Amer. Math. Monthly 62 (1955), no. 7, 25–31. MR 73216, DOI 10.2307/2308177
- H. J. Ryser, Combinatorial properties of matrices of zeros and ones, Canadian J. Math. 9 (1957), 371–377. MR 87622, DOI 10.4153/CJM-1957-044-3 19. O. Taussky, Some computational problems concerning integral matrices, Proceedings of the Sicily Congress, 1956.
- C. Tompkins, Machine attacks on problems whose variables are permutations, Proceedings of Symposia in Applied Mathematics. Vol. VI. Numerical analysis, McGraw-Hill Book Co., Inc., New York, for the American Mathematical Society, Providence, R.I., 1956, pp. 195–211. MR 0080380
- P. Turán, On a problem in the theory of determinants, Acta Math. Sinica 5 (1955), 411–423 (Chinese, with English summary). MR 73555
- H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957. MR 0088489, DOI 10.1007/978-3-662-25739-5
- H. S. M. Coxeter, On subgroups of the modular group, J. Math. Pures Appl. (9) 37 (1958), 317–319. MR 98786
- Everett C. Dade, Abelian groups of unimodular matrices, Illinois J. Math. 3 (1959), 11–27. MR 100027
- Jean Dieudonné, La géométrie des groupes classiques, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 5, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955 (French). MR 0072144
- Karl Goldberg, Unimodular matrices of order $2$ that commute, J. Washington Acad. Sci. 46 (1956), 337–338. MR 86093
- K. Goldberg and M. Newman, Pairs of matrices of order two which generate free groups, Illinois J. Math. 1 (1957), 446–448. MR 89207, DOI 10.1215/ijm/1255380395
- L. K. Hua and I. Reiner, On the generators of the symplectic modular group, Trans. Amer. Math. Soc. 65 (1949), 415–426. MR 29942, DOI 10.1090/S0002-9947-1949-0029942-0
- L. K. Hua and I. Reiner, Automorphisms of the unimodular group, Trans. Amer. Math. Soc. 71 (1951), 331–348. MR 43847, DOI 10.1090/S0002-9947-1951-0043847-X
- L. K. Hua and I. Reiner, Automorphisms of the projective unimodular group, Trans. Amer. Math. Soc. 72 (1952), 467–473. MR 49194, DOI 10.1090/S0002-9947-1952-0049194-5 10. A. Hurwitz, Die unimodularen Substitutionen in einem algebraischen Zahlenkörper, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa., 1895, pp. 332-356.
- A. Karrass and D. Solitar, On free products, Proc. Amer. Math. Soc. 9 (1958), 217–221. MR 95875, DOI 10.1090/S0002-9939-1958-0095875-8
- Joseph Landin and Irving Reiner, Automorphisms of the general linear group over a principal ideal domain, Ann. of Math. (2) 65 (1957), 519–526. MR 87666, DOI 10.2307/1970063
- Joseph Landin and Irving Reiner, Automorphisms of the two-dimensional general linear group over a Euclidean ring, Proc. Amer. Math. Soc. 9 (1958), 209–216. MR 103232, DOI 10.1090/S0002-9939-1958-0103232-0
- Joseph Landin and Irving Reiner, Automorphisms of the Gaussian unimodular group, Trans. Amer. Math. Soc. 87 (1958), 76–89. MR 103231, DOI 10.1090/S0002-9947-1958-0103231-3
- Morris Newman, Structure theorems for modular subgroups, Duke Math. J. 22 (1955), 25–32. MR 67936
- Morris Newman, An alternative proof of a theorem on unimodular groups, Proc. Amer. Math. Soc. 6 (1955), 998–1000. MR 78990, DOI 10.1090/S0002-9939-1955-0078990-1
- Morris Newman, The normalizer of certain modular subgroups, Canadian J. Math. 8 (1956), 29–31. MR 78989, DOI 10.4153/CJM-1956-005-5
- Morris Newman, An inclusion theorem for modular groups, Proc. Amer. Math. Soc. 8 (1957), 125–127. MR 85295, DOI 10.1090/S0002-9939-1957-0085295-3
- M. Newman and I. Reiner, Inclusion theorems for congruence subgroups, Trans. Amer. Math. Soc. 91 (1959), 369–379. MR 106953, DOI 10.1090/S0002-9947-1959-0106953-4
- Jakob Nielsen, Die Isomorphismengruppe der freien Gruppen, Math. Ann. 91 (1924), no. 3-4, 169–209 (German). MR 1512188, DOI 10.1007/BF01556078 19b. M. Newman and I. Reiner, Die Gruppe der drei-dimensionalen Gittertransformationen, Danske-Vidensk. Selskabs. Math. Fys. vol. 5 (1924) pp. 3-29.
- Hans Rademacher, Zur Theorie der Dedekindschen Summen, Math. Z. 63 (1956), 445–463 (German). MR 79615, DOI 10.1007/BF01187951
- Irving Reiner, Symplectic modular complements, Trans. Amer. Math. Soc. 77 (1954), 498–505. MR 67076, DOI 10.1090/S0002-9947-1954-0067076-1
- Irving Reiner, Maximal sets of involutions, Trans. Amer. Math. Soc. 79 (1955), 459–476. MR 70622, DOI 10.1090/S0002-9947-1955-0070622-6
- Irving Reiner, Automorphisms of the symplectic modular group, Trans. Amer. Math. Soc. 80 (1955), 35–50. MR 73603, DOI 10.1090/S0002-9947-1955-0073603-1
- Irving Reiner, Real linear characters of the symplectic modular group, Proc. Amer. Math. Soc. 6 (1955), 987–990. MR 75212, DOI 10.1090/S0002-9939-1955-0075212-2
- Irving Reiner, A new type of automorphism of the general linear group over a ring, Ann. of Math. (2) 66 (1957), 461–466. MR 95882, DOI 10.2307/1969903
- Irving Reiner, Normal subgroups of the unimodular group, Illinois J. Math. 2 (1958), 142–144. MR 95881
- Irving Reiner and J. D. Swift, Congruence subgroups of matrix groups, Pacific J. Math. 6 (1956), 529–540. MR 82529, DOI 10.2140/pjm.1956.6.529
- Carl Ludwig Siegel, Discontinuous groups, Ann. of Math. (2) 44 (1943), 674–689. MR 9959, DOI 10.2307/1969104
- Olga Taussky and John Todd, Commuting bilinear transformations and matrices, J. Washington Acad. Sci. 46 (1956), 373–375 (1957). MR 86094 30. O. Taussky, Research problem 10, Bull. Amer. Math. Soc. vol. 64 (1958) pp. 124. 1. H. Davenport, Minkowski’s inequality for the minimum associated with a convex body, Quart. J. Math. Oxford Ser. vol. 10 (1939) pp. 119-121.
- Martin Kneser, Klassenzahlen definiter quadratischer Formen, Arch. Math. 8 (1957), 241–250 (German). MR 90606, DOI 10.1007/BF01898782
- Martin Kneser, Klassenzahlen quadratischer Formen, Jber. Deutsch. Math.-Verein. 61 (1958), no. Abt. 1, 76–88 (German). MR 105392 3. Chao Ko, Determination of the class number of positive quadratic forms in nine variables with determinant unity, J. London Math. Soc. vol. 13 (1938) pp. 102-110. 4. Chao Ko, On the positive definite quadratic forms with determinant unity, Acta Arith. vol. 3 (1939) pp. 79-85.
- Walter Ledermann, An arithmetical property of quadratic forms, Comment. Math. Helv. 33 (1959), 34–37. MR 100569, DOI 10.1007/BF02565904 5a. K. Mahler, On Minkowski’s theory of reduction of positive quadratic forms, Quart. J. Math. Oxford Ser. vol. 9 (1938) pp. 259-262. 6. H. Minkowski, Zur Theorie der positiven quadratischen Formen, Ges. Abh., 1, Leipzig, Teubner, 1911, pp. 212-218. 6a. H. Minkowski, Diskontinuitätsbereich für arithmetische Äquivalenz, Ges. Abh., 2, Leipzig, Teubner, 1911, pp. 53-100. 7. L. J. Mordeil, The definite quadratic forms in eight variables with determinant unity, J. Math. Pures Appl. vol. 17 (1938) pp. 41-46.
- Morris Newman and Olga Taussky, Classes of positive definite unimodular circulants, Canadian J. Math. 9 (1957), 71–73. MR 82947, DOI 10.4153/CJM-1957-010-5
- R. E. O’Connor and G. Pall, The construction of integral quadratic forms of determinant 1, Duke Math. J. 11 (1944), 319–331. MR 10153, DOI 10.1215/S0012-7094-44-01127-0
- Gordon Pall, The arithmetical invariants of quadratic forms, Bull. Amer. Math. Soc. 51 (1945), 185–197. MR 12641, DOI 10.1090/S0002-9904-1945-08307-4
- Gordon Pall, Representation by quadratic forms, Canad. J. Math. 1 (1949), 344–364. MR 34795, DOI 10.4153/cjm-1949-032-9
- G. Pall and O. Taussky, Application of quaternions to the representations of a binary quadratic form as a sum of four squares, Proc. Roy. Irish Acad. Sect. A 58 (1957), 23–28. MR 0092809
- Robert Remak, Über die Minkowskische Reduktion der definiten quadratischen Formen, Compositio Math. 5 (1938), 368–391 (German). MR 1557006
- Carl Ludwig Siegel, Über die analytische Theorie der quadratischen Formen, Ann. of Math. (2) 36 (1935), no. 3, 527–606 (German). MR 1503238, DOI 10.2307/1968644
- Carl Ludwig Siegel, Über die analytische Theorie der quadratischen Formen. II, Ann. of Math. (2) 37 (1936), no. 1, 230–263 (German). MR 1503276, DOI 10.2307/1968694
- Carl Ludwig Siegel, Über die analytische Theorie der quadratischen Formen. III, Ann. of Math. (2) 38 (1937), no. 1, 212–291 (German). MR 1503335, DOI 10.2307/1968520
- Carl Ludwig Siegel, Einheiten quadratischer Formen, Abh. Math. Sem. Hansischen Univ. 13 (1940), 209–239 (German). MR 3003, DOI 10.1007/BF02940759
- B. L. van der Waerden, Die Reduktionstheorie der positiven quadratischen Formen, Acta Math. 96 (1956), 265–309 (German). MR 82513, DOI 10.1007/BF02392364
- Hermann Weyl, Theory of reduction for arithmetical equivalence, Trans. Amer. Math. Soc. 48 (1940), 126–164. MR 2345, DOI 10.1090/S0002-9947-1940-0002345-2 19. H. Wey, Theory of reduction for arithmetical equivalence, II, Proc. London Math. Soc. vol. 47 (1942) pp. 268-289.
- Johann Jakob Burckhardt, Die Bewegungsgruppen der Kristallographie, Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, vol. 13, Verlag Birkhäuser, Basel, 1947 (German). MR 0020553, DOI 10.1007/978-3-0348-4110-8
- Hans Zassenhaus, Über einen Algorithmus zur Bestimmung der Raumgruppen, Comment. Math. Helv. 21 (1948), 117–141 (German). MR 24424, DOI 10.1007/BF02568029 1. E. Cahen, Theorie des nombres I, Paris, Hermann, 1914. 2. A. Châtelet, Groupes abéliens finis, Paris, Gauthier-Villars, 1925. 3. L. G. du Pasquier, Zahlentheorie der Tettarionen, Vierteljschr. Naturf. Ges. Zürich vol. 51 (1906) pp. 55-129. 4. C. Hermite, Sur l’introduction des variables continues dans la théorie des nombres, J. Reine Angew. Math. vol. 41 (1851) pp. 191-216. 5. C. C. MacDuffee, Theory of matrices, Berlin, Springer, 1933. 6. C. C. MacDuffee, Matrices with elements in a principal ideal ring, Bull. Amer. Math. Soc. ol. 39 (1933) pp. 564-584.
- Gordon Pall, Representation by quadratic forms, Canad. J. Math. 1 (1949), 344–364. MR 34795, DOI 10.4153/cjm-1949-032-9
- Irving Reiner, Unimodular complements, Amer. Math. Monthly 63 (1956), 246–247. MR 76747, DOI 10.2307/2310351 9. H. J. S. Smith, On systems of linear indeterminate equations and congruences, Philos. Trans. Roy. Soc. London vol. 151 (1861) pp. 293-326.
- Oswald Veblen and Philip Franklin, On matrices whose elements are integers, Ann. of Math. (2) 23 (1921), no. 1, 1–15. MR 1502588, DOI 10.2307/1967777 1. E. Artin, Zur Arithmetik hyperkomplexer Zahlen, Abh. Math. Sem. Univ. Hamburg vol. 5 (1928) pp. 261-289.
- H. Brandt, Idealtheorie in Quaternionenalgebren, Math. Ann. 99 (1928), no. 1, 1–29 (German). MR 1512436, DOI 10.1007/BF01459083 3. H. Brandt, Idealtheorie in einer Dedekindschen Algebra, Jber. Deutsch. Math. Verein. vol. 37 (1928) pp. 5-7. 4. C. Chevalley, L’arithmétique dans les algèbres de matrices, Actualités Sci. Ind. no. 323 (1936).
- H. S. M. Coxeter, Integral Cayley numbers, Duke Math. J. 13 (1946), 561–578. MR 19111
- Max Deuring, Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 41, Springer-Verlag, Berlin-New York, 1968 (German). Zweite, korrigierte auflage. MR 0228526, DOI 10.1007/978-3-642-85533-7 7. L. E. Dickson, Arithmetic of quaternions, Proc. London Math. Soc. vol. 20 (1922) pp. 225-232. 8. L. E. Dickson, A new simple theory of hypercomplex integers, Bull. Amer. Math. Soc. vol. 29 (1923) p. 121. 9. L. E. Dickson, Algebras and their arithmetics, Chicago, University Press, 1923. 10. L. E. Dickson, Algebren und ihre Zahlentheorie, Zürich, Orell Füsseli, 1927. 11. M. Eichler, Bestimmung der Idealklassenzahl in gewissen normalen einfachen Algebren, J. Reine Angew. Math. vol. 176 (1937) pp. 192-202.
- Helmut Hasse, Über $\wp$-adische Schiefkörper und ihre Bedeutung für die Arithmetik hyperkomplexer Zahlsysteme, Math. Ann. 104 (1931), no. 1, 495–534 (German). MR 1512683, DOI 10.1007/BF01457954 13. K. Hey, Analytische Zahlentheorie in Systemen hyperkomplexer Zahlen, Dissertation, University of Hamburg, 1929. 14. A. Hurwitz, Über die Zahlentheorie der Quaternionen, Ges. Abh. II, Basel, Birkhäuser, 1933, pp. 303-330.
- Claiborne G. Latimer, On ideals in generalized quaternion algebras and Hermitian forms, Trans. Amer. Math. Soc. 38 (1935), no. 3, 436–446. MR 1501819, DOI 10.1090/S0002-9947-1935-1501819-0 16. R. Lipschitz, Recherches sur les transformations, par des substitutions réelles, d’une somme de deux ou de trois carrés en elle-même, J. Math. Pures Appl. vol. 4 (1886) pp. 373-439.
- K. Mahler, On ideals in the Cayley-Dickson algebra, Proc. Roy. Irish Acad. Sect. A 48 (1942), 123–133. MR 0007745
- Gordon Pall, On the arithmetic of quaternions, Trans. Amer. Math. Soc. 47 (1940), 487–500. MR 2350, DOI 10.1090/S0002-9947-1940-0002350-6
- Gordon Pall, On generalized quaternions, Trans. Amer. Math. Soc. 59 (1946), 280–332. MR 18702, DOI 10.1090/S0002-9947-1946-0018702-X
- G. Pall and O. Taussky, Application of quaternions to the representations of a binary quadratic form as a sum of four squares, Proc. Roy. Irish Acad. Sect. A 58 (1957), 23–28. MR 0092809
- R. A. Rankin, A certain class of multiplicative functions, Duke Math. J. 13 (1946), 281–306. MR 18683, DOI 10.1215/S0012-7094-46-01326-9
- Otto Schilling, Über gewisse Beziehungen zwischen der Arithmetik hyperkomplexer Zahlsysteme und algebraischer Zahlkörper, Math. Ann. 111 (1935), no. 1, 372–398 (German). MR 1513002, DOI 10.1007/BF01472227 23. A. Speiser, Allgemeine Zahlentheorie, Vierteljschr. Naturf. Ges. Zürich, vol. 71 (1926) pp. 8-41. 24. A. Speiser, Idealtheorie in rationalen Algebren, "Algebras and their arithmetics," Chicago, University Press, 1923, Chapter 13.
- A. Chatelet, Sur certains ensembles de tableaux et leur application à la théorie des nombres, Ann. Sci. École Norm. Sup. (3) 28 (1911), 105–202 (French). MR 1509137, DOI 10.24033/asens.635
- Max Deuring, Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 41, Springer-Verlag, Berlin-New York, 1968 (German). Zweite, korrigierte auflage. MR 0228526, DOI 10.1007/978-3-642-85533-7
- C. C. MacDuffee, A method for determining the canonical basis of an ideal in an algebraic field, Math. Ann. 105 (1931), no. 1, 663–665. MR 1512733, DOI 10.1007/BF01455837
- C. C. MacDuffee, Modules and ideals in a Frobenius algebra, Monatsh. Math. Phys. 48 (1939), 293–313. MR 599, DOI 10.1007/BF01696186
- C. C. MacDuffee, An introduction to the theory of ideals in linear associative algebras, Trans. Amer. Math. Soc. 31 (1929), no. 1, 71–90. MR 1501469, DOI 10.1090/S0002-9947-1929-1501469-3 6. H. Poincaré, Sur un mode nouveau de représentation géometrique des formes quadratiques définies ou indéfinies, Journal de l’École Polytechnique vol. 47 (1880) pp. 177-245. 7. G. Shover and C. C. MacDuffee, Ideal multiplication in a linear algebra, Bull. Amer. Math. Soc. vol. 37 (1931) pp. 434-438. 8. G. Shover, Class numbers in a linear associative algebra, Bull. Amer. Math. Soc. vol. 39 (1933) pp. 610-614.
- A. A. Albert, Rational normal matrices satisfying the incidence equation, Proc. Amer. Math. Soc. 4 (1953), 554–559. MR 56570, DOI 10.1090/S0002-9939-1953-0056570-X
- R. P. Bambah and S. Chowla, On integer roots of the unit matrix, Proc. Nat. Inst. Sci. India 13 (1947), 241–246. MR 23263
- D. K. Faddeev, On the characteristic equations of rational symmetirc matrices, Doklady Akad. Nauk SSSR (N. S.) 58 (1947), 753–754 (Russian). MR 0022860
- D. S. Gorschkow, Kubische Körper und symmetrische Matrizen, C. R. (Doklady) Acad. Sci. URSS (N. S.) 31 (1941), 842–844 (German). MR 0005092
- Fred Krakowski, Eigenwerte und Minimalpolynome symmetrischer Matrizen in kommutativen Körpern, Comment. Math. Helv. 32 (1958), 224–240 (German). MR 99346, DOI 10.1007/BF02564580
- Claiborne G. Latimer and C. C. MacDuffee, A correspondence between classes of ideals and classes of matrices, Ann. of Math. (2) 34 (1933), no. 2, 313–316. MR 1503108, DOI 10.2307/1968204
- Hans Rademacher, Zur Theorie der Dedekindschen Summen, Math. Z. 63 (1956), 445–463 (German). MR 79615, DOI 10.1007/BF01187951
- Irving Reiner, Integral representations of cyclic groups of prime order, Proc. Amer. Math. Soc. 8 (1957), 142–146. MR 83493, DOI 10.1090/S0002-9939-1957-0083493-6
- Ernst Steinitz, Rechteckige Systeme und Moduln in algebraischen Zahlköppern. I, Math. Ann. 71 (1911), no. 3, 328–354 (German). MR 1511661, DOI 10.1007/BF01456849
- Ernst Steinitz, Rechteckige Systeme und Moduln in algebraischen Zahlkörpern. II, Math. Ann. 72 (1912), no. 3, 297–345 (German). MR 1511701, DOI 10.1007/BF01456721
- Olga Taussky, On a theorem of Latimer and MacDuffee, Canad. J. Math. 1 (1949), 300–302. MR 30491, DOI 10.4153/cjm-1949-026-1
- Olga Taussky, Classes of matrices and quadratic fields, Pacific J. Math. 1 (1951), 127–132. MR 43064, DOI 10.2140/pjm.1951.1.127
- Olga Taussky, Classes of matrices and quadratic fields. II, J. London Math. Soc. 27 (1952), 237–239. MR 46335, DOI 10.1112/jlms/s1-27.2.237
- Olga Taussky, On matrix classes corresponding to an ideal and its inverse, Illinois J. Math. 1 (1957), 108–113. MR 94326
- Olga Taussky and John Todd, Matrices with finite period, Proc. Edinburgh Math. Soc. (2) 6 (1940), 128–134. MR 2829, DOI 10.1017/s0013091500024627
- Olga Taussky and John Todd, Matrices of finite period, Proc. Roy. Irish Acad. Sect. A 46 (1941), 113–121. MR 0003607 17. H. Zassenhaus, Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz ganzzahliger Substitutionsgruppen, Abh. Math. Sem. Univ. Hamburg vol. 12 (1938) pp. 276-288.
- Graham. Higman, The units of group-rings, Proc. London Math. Soc. (2) 46 (1940), 231–248. MR 2137, DOI 10.1112/plms/s2-46.1.231
- M. Newman and Olga Taussky, On a generalization of the normal basis in abelian algebraic number fields, Comm. Pure Appl. Math. 9 (1956), 85–91. MR 75985, DOI 10.1002/cpa.3160090106
- Morris Newman and Olga Taussky, Classes of positive definite unimodular circulants, Canadian J. Math. 9 (1957), 71–73. MR 82947, DOI 10.4153/CJM-1957-010-5 4. O. Taussky, Normal matrices in algebraic number theory, Proceedings of the International Congress of Mathematicians, Amsterdam, 1956.
- Olga Taussky, Unimodular integral circulants, Math. Z. 63 (1955), 286–289. MR 72890, DOI 10.1007/BF01187938 1. W. Burnside, On the arithmetical nature of the coefficients in a group of linear substitutions, Proc. London Math. Soc. (2) 7 (1908) pp. 8-13.
- Fritz-Erdmann Diederichsen, Über die Ausreduktion ganzzahliger Gruppendarstellungen bei arithmetischer Äquivalenz, Abh. Math. Sem. Hansischen Univ. 13 (1940), 357–412 (German). MR 2133, DOI 10.1007/BF02940768
- Wolfgang Gaschütz, Über den Fundamentalsatz von Maschke zur Darstellungstheorie der endlichen Gruppen, Math. Z. 56 (1952), 376–387 (German). MR 51838, DOI 10.1007/BF01686756
- J.-M. Maranda, On the equivalence of representations of finite groups by groups of automorphisms of modules over Dedekind rings, Canadian J. Math. 7 (1955), 516–526. MR 88498, DOI 10.4153/CJM-1955-054-9
- Jean-Marie Maranda, On $\mathfrak {B}$-adic integral representations of finite groups, Canad. J. Math. 5 (1953), 344–355. MR 56605, DOI 10.4153/cjm-1953-040-2
- Irving Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc. 72 (1952), 327–340. MR 46349, DOI 10.1090/S0002-9947-1952-0046349-0
- Irving Reiner, Maschke modules over Dedekind rings, Canadian J. Math. 8 (1956), 329–334. MR 78969, DOI 10.4153/CJM-1956-037-3
- Irving Reiner, Integral representations of cyclic groups of prime order, Proc. Amer. Math. Soc. 8 (1957), 142–146. MR 83493, DOI 10.1090/S0002-9939-1957-0083493-6 9. I. Schur, Arithmetische Untersuchungen über endliche Gruppen linearer Substitutionen, S.-B. Preuss. Akad. Wiss. Berlin (1906) pp. 164-184.
- I. Schur, Über Gruppen linearer Substitutionen mit Koeffizienten aus einem algebraischen Zahlkörper, Math. Ann. 71 (1911), no. 3, 355–367 (German). MR 1511662, DOI 10.1007/BF01456850 11. H. Zassenhaus, Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz, Abh. Math. Sem. Univ. Hamburg vol. 12 (1938) pp. 276-288.
Additional Information
- Journal: Bull. Amer. Math. Soc. 66 (1960), 327-345
- DOI: https://doi.org/10.1090/S0002-9904-1960-10439-9
- MathSciNet review: 0120237