1. Let \(C \) be the complex plane, \(S(C) \) the tribe of all Borel parts of \(C \), \(B^\infty(C) \) the algebra of bounded complex-valued Borel measurable functions defined on \(C \) and \(M^1(C) \) the set of bounded complex Radon measures on \(C \). Let \(E \) be a locally convex space which is separated, quasi-complete and barrelled. A family \(\mathcal{F} = (\mu_x(x'))_{x \in E, x' \in E'} \) of measures belonging to \(M^1(C) \) is called a \textit{spectral family} on \(C \) if there exists a representation \(f \mapsto U_{\mathcal{F}, f} \) of the algebra \(B^\infty(C) \) into the algebra \(L(E, E) \) mapping \(1 \) onto \(I \) and satisfying the equations \(\int_{C} \phi \, d\mu_x(x') = \langle U_{\mathcal{F}, f} \phi, x' \rangle \) for all \(\phi \in B^\infty(C) \), \(x \in E \), \(x' \in E' \). By \(P_{\mathcal{F}} \) we denote the \textit{spectral measure} defined on \(S(C) \) by the equations \(P_{\mathcal{F}}(\sigma) = U_{\mathcal{F}, \phi_\sigma} \) (\(\phi_\sigma \) is the characteristic function of \(\sigma \)). A linear mapping \(T \) of (the vector space) \(D_T \subset E \) into \(E \) commutes with \(\mathcal{F} \) if \(TU_{\mathcal{F}, f} = U_{\mathcal{F}, f} T \) for all \(f \in B^\infty(C) \).

Let \(T \) be a linear mapping of \(D_T \subset E \) into \(E \). We say that \(\lambda \in \hat{C} \) (= the one point compactification of \(C \)) belongs to the \textit{resolvent set} \(r(T) \) of \(T \) if there is a neighborhood \(V \) of \(\lambda \) such that: (i) \(\lambda I - T \) is a one-to-one mapping of \(D_T \) onto \(E \) and \((\lambda I - T)^{-1} \in L(E, E) \) for each \(\lambda \in V - \{\infty\} \); (ii) \(\{ (\lambda I - T)^{-1} | \lambda \in V - \{\infty\} \} \) is a bounded part of \(L(E, E) \). The set \(sp(T) = \hat{C} - r(T) \) is the \textit{spectrum} of \(T \). If \(sp(T) \not\subset \infty \) we say that \(T \) is \textit{regular}.

By an \textit{admissible set} we mean a directed (for \(\subset \)) set of closed parts of \(C \) whose union is \(C \), having a countable cofinal part and containing with \(A \subset C \) every closed part of \(A \). We denote below by \(C_0 \) and \(C_1 \) the admissible set of all compact parts of \(C \) and all closed parts of \(C \), respectively. Let \(C \) be an admissible set and \(T \) a closed linear mapping of \(D_T \subset E \) into \(E \). We say that \(T \) is a \textit{\(C \)-spectral operator} if there is a spectral family \(\mathcal{F} \) on \(C \) such that:

\begin{enumerate}
 \item[(D_1)] \(T \) commutes with \(\mathcal{F} \);
 \item[(D_II)] \(TU_{\mathcal{F}, f} \in L(E, E) \) for each \(f \in B^\infty(C) \) whose support is compact and belongs to \(C \);
 \item[(D_III)] \(sp(T_{\sigma}) \subset \sigma \) for every \(\sigma \in C \).
\end{enumerate}

\(E \) barrelled means that every weakly bounded part of the dual space \(E' \) is equi-continuous; \(E \) quasi-complete means that every bounded closed part of \(E \) is complete. \(L(E, E) \) is the algebra of all linear continuous mappings of \(E \) into \(E \) endowed with the topology of uniform convergence on the bounded parts of \(E \).

\footnote{For a set \(A \subset C \) we denote by \(A^\sigma \) the closure of \(A \) in \(C \).}
For $\sigma \in \mathcal{S}(C)$ we denote by T_σ the mapping $x \mapsto Tx$ of $D_T \cap E_\sigma$ into E_σ, where $E_\sigma = P_\mathcal{F}(\sigma)(E)$.

Theorem 1. Let \mathcal{C} be an admissible set and T a closed linear mapping of $D_T \subset E$ into E. Then there is at most one spectral family on C satisfying (D_1), (D_{11}) and (D_{111}).

For a \mathcal{C}-spectral operator T we shall denote by \mathcal{F}_T the unique spectral family on C satisfying (D_1), (D_{11}) and (D_{111}).

Theorem 2. Let T be a \mathcal{C}-spectral operator. Then every $A \in L(E, E)$ commuting with T commutes with \mathcal{F}_T.

Let now \mathcal{C} be an admissible set of parts of C and $\mathcal{F} = (m_{z, z'})_{z \in E, z' \in E'}$ a spectral family on C. Consider the following property concerning $\mathcal{F} : P\mathcal{C}$. Given $x \in E$, $x' \in E'$ there is $\sigma(x, x') \in \mathcal{C}$ such that the supports of the measures $m_{Q, z}$ are contained in $\sigma(x, x')$ for all $Q \in L(E, E)$ commuting with \mathcal{F}.

Theorem 3. Let T be a \mathcal{C}-spectral operator and suppose that \mathcal{F}_T has property $P\mathcal{C}$. Then $\text{sp}(T_\sigma) \subset \sigma^-$ for all $\sigma \in \mathcal{C}_1$.

Theorem 4. Let T be a \mathcal{C}-spectral operator. Then $\mathcal{F}(\mathcal{F}_T)$ is compact.

2. We say that an operator $S \in L(E, E)$ is scalar if there is a spectral family $\mathcal{F} = (m_{z, z'})_{z \in E, z' \in E'}$ on C of measures with compact support such that $\int \mathcal{C} dm_{z, z'} = \langle Sx, x' \rangle$ for all $x \in E, x' \in E'$; we write in this case $S = U_{\mathcal{F}_z}$. An operator $Q \in L(E, E)$ is quasi-nilpotent if $\lim_{n \to \infty} |\langle Q^n x, x' \rangle|^{1/n} = 0$ for all $x \in E, x' \in E'$.

Theorem 5. (5.1) Let $T \in L(E, E)$ be a \mathcal{C}_0-spectral operator and suppose that \mathcal{F}_T has property $P\mathcal{C}_0$. Then $T = U_{\mathcal{F}_z} + Q$, where Q is quasi-nilpotent, and T, $U_{\mathcal{F}_z}$, Q commute. Further if $T = S + R$ where S is scalar, R quasi-nilpotent and where T, S, R commute, then $S = U_{\mathcal{F}_z}$ and $R = Q$. (5.2) Let \mathcal{F} be a spectral family on C of measures with compact support and Q a quasi-nilpotent operator commuting with \mathcal{F}. Then $T = U_{\mathcal{F}_z} + Q$ is a \mathcal{C}_0-spectral operator and $\mathcal{F} = \mathcal{F}_T$.

3. In what follows we denote by Φ an arbitrary directed family of closed barreled subspaces of E having the properties: (i) the set $E_0 = \bigcup_{F \subset \Phi} F$ is dense in E; (ii) a linear mapping T of E_0 into E_0 verifying the relations $T(F) \subset F$ for all $F \subset \Phi$ is continuous if $T(F)(T_F$ is the mapping $x \mapsto Tx$ of F into F) is continuous for all $F \subset \Phi$; (iii) given

*We denote by $S(\mathcal{F}_T)$ the closure in C of the union of the supports of the measures belonging to \mathcal{F}_T. License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
x ∈ E and x′ ∈ E′ there is x₀ ∈ E₀ verifying the equations <Tx, x′> = <Tx₀, x′> for each T ∈ L(E, E) such that T(F) ⊂ F for all F ∈ Φ. Given Φ let LΦ(E, E) be the set of all T ∈ L(E, E) such that: (i) T(F) ⊂ F for all F ∈ Φ; (ii) T is regular for all F ∈ Φ and sp(T_F) ⊂ sp(T_{F′}) ⊂ sp(T) if F′, F″ ∈ Φ, F′ ⊂ F″. For T ∈ LΦ(E, E) we write A(T) = ∪_{F ∈ Φ} sp(T_F).

Theorem 6. If T ∈ LΦ(E, E) then sp(T) = A(T)^−.

Theorem 7. If T ∈ LΦ(E, E) then there exists a unique continuous representation J→j(T) of H(A(T)) into L(E, E) having the properties:

(7.1) J(T) = I; (7.2) z(T) = T. Further j(T) ∈ LΦ(E, E) and sp(j(T)) = f(A(T))^− (f is an element in the equivalence class j).

Let T ∈ L(E, E) be a C₀-spectral operator. Suppose that σ₀ = (m_{z,x′}) z ∈ B, x′ ∈ B′ has property P₂(0) and let Φ = (E_φ)_φ ∈ Φ). Then Φ has the properties (i), (ii), (iii) and T ∈ LΦ(E, E). Moreover:

Theorem 8. The operator j(T) is C₁-spectral for each j ∈ H(A(T)) and

\[(1) \quad \langle f(T)x, x′ \rangle = \sum_{j=0}^{∞} \frac{1}{j!} \int_{C} f^{(j)} dm_{x,x′}, \quad \text{for } x ∈ E, x′ ∈ E′, \]

where Q is the quasi-nilpotent part of T. The series (1) converges absolutely and uniformly for given x ∈ E and x′ ∈ A (A is an arbitrary equicontinuous part of E′).

4. Let C be an admissible set, (σ(n)) an increasing sequence of compact parts belonging to C whose union is C, T : D_T → E a C₁-spectral operator, σ₀ = (m_{z,x′}) z ∈ B, x′ ∈ B′, and E₀ = ∪E_σ(n). Let T₀ be the restriction of T to E₀ ⊂ D₀ and σ₀ = (m_{z,x′}) z ∈ E₀, x′ ∈ E₀. Here E₀ is endowed with the topology, inductive limit of the topologies of the subspaces E_σ(n) of E, and, for x ∈ E_σ(n) ⊂ E₀ and x′ ∈ E′₀, m_{z,x′} = m_{z,x′}, if y′ ∈ E′ is such that x₀_y = y₀y′. If y′ ∈ E′ has property P₂(0) then j(T) has property P₂(0). Further A ∈ L(E, E) commutes with T if and only if A(E₀) ⊂ E₀ and A_{B₀} commutes with T₀. Also T is "scalar" if and only if T₀ is scalar; if T is "scalar" and f is such that φ_{E}(n)f ∈ B_{n}(C) for all n then f(T)=f(T₀).

Theorem 9. (9.1) T₀ is a C₁-spectral operator, σ₀ = σ₀ and σ₀ has property P₂(0) (Σ is the smallest admissible set containing (σ(n))).

(9.2) T is the closure of T₀. (9.3) sp(T₀) = S(σ₀)^−.

Further A ∈ L(E, E) commutes with T if and only if A(E₀) ⊂ E₀ and A_{B₀} commutes with T₀. Also T is "scalar" if and only if T₀ is scalar; if T is "scalar" and f is such that φ_{E}(n)f ∈ B_{n}(C) for all n then f(T)=f(T₀).

4 For the definition of H(A), A ⊂ C (endowed with the "van Hove topology"), see for instance [5] (where A is supposed compact) and [4, pp. 255-256].
5. The subject matter of this note has been suggested by [2] and by [1; 3]. The Theorems 1, 2, 5 and 8 are essentially generalizations of the corresponding results in [2; 3]. The results of paragraph 4 show some of the relations between the unbounded spectral operators defined in [1] and the (everywhere defined continuous) spectral operators defined above. The definition of the spectrum and of the quasi-nilpotent operator were suggested by definitions given in [5; 6], respectively.

REFERENCES

YALE UNIVERSITY