SIMULTANEOUS RATIONAL APPROXIMATIONS TO ALGEBRAIC NUMBERS

BY L. G. PECK

Communicated by N. C. Ankeny, December 17, 1960

Let K be an algebraic number field of degree $n+1$ over the rationals. The conjugates $K^{(0)}, K^{(1)}, \ldots, K^{(n)}$ are arranged so that $K^{(0)}, K^{(1)}, \ldots, K^{(r)}$ are real and

$$K^{(r+k)} = \overline{K^{(r+k)}}, \quad (k = 1, 2, \ldots, s).$$

Here $r+2s=n$. It will be assumed throughout that $r \geq 0$, so that $K^{(0)}$ is real. Numbers in K are denoted by Greek letters, superscripts being used for the corresponding conjugates. We shall frequently omit the superscript (0); this identification of K with $K^{(0)}$ will cause no confusion. Trace and norm of elements of K are denoted by S and N, respectively.

Let β_0, \ldots, β_n be elements of K which are linearly independent over the rationals. It is well known that infinitely many sets of rational integers (q_0, q_1, \ldots, q_n) can be found satisfying,

1. $q_0 > 0$, $\text{g.c.d.}(q_0, q_1, \ldots, q_n) = 1,$

and (omitting the superscript (0))

2. $$\frac{\beta_j - q_j}{\beta_0 - q_0} < C q_0^{-1/n}, \quad (j = 1, \ldots, n),$$

with the constant $C=1$. It will be shown here how to determine all solutions of (1), (2). From this will be deduced not only the known fact that if C is too small (2) has no solutions, but also the hitherto unknown result that the sharper inequalities

3. $$\begin{align*}
|q_0 \beta_j - q_j \beta_0| &< C q_0^{-1/n} (\log q_0)^{-1/(n-1)}, \\
|q_0 \beta_n - q_n \beta_0| &< C q_0^{-1/n},
\end{align*}$$

$(j = 1, \ldots, n - 1)$, have infinitely many solutions.

This result sharpens some of the conclusions of Cassels and Swinnerton-Dyer (I), but does not furnish any further evidence for or against the conjecture of Littlewood which is considered in their paper.

A number of interesting problems can be raised in connection with (3). In one direction it can be asked whether $n-1$ of the inequalities (2) can be improved with factors which are not all the same; e.g.,
one might conjecture that we can find infinitely many solutions of
the inequalities

\[|q_0 \beta_j - q_j \beta_0| < C q_0^{-1/n} f_j(q_0), \]

\[|q_0 \beta_n - q_n \beta_0| < C q_0^{-1/n}, \]

with \(f_1(q_0) \cdots f_{n-1}(q_0) = \log q_0 \) and \(f_j(q_0) \geq 1 \) \((j = 1, \ldots, n-1) \).

A much more difficult set of problems is in the direction of the
Thue-Siegel-Roth theorem, in which one tries to specify the functions
\(f_j \) in such a way that the corresponding inequalities have at most a
finite number of solutions. In view of Roth’s theorem one might con­
jecture that \(f_j = q_0^\epsilon \) would have the indicated effect, but this is by
no means obvious.

The numbers \(\beta_0, \ldots, \beta_n \) form the basis of a module \(M \). Denote
by \(R \) the set of all integers \(p \) in \(K \) such that \(p/3 \) is in \(M \) whenever
\(0 \) is in \(M \). Clearly \(R \) is a ring. By the Dirichlet theory of units, we may
find a basis \(\epsilon_1, \ldots, \epsilon_r+1 \) of the units in \(R \). Since the only roots of
unity in \(K \) are \(\pm 1 \) (because \(K(0) \) is real) every unit \(\epsilon \) in \(R \) is uniquely
expressible in the form

\[\epsilon = \pm \epsilon_1 \epsilon_2 \cdots \epsilon_{r+1} \cdot \]

Let \(C_1 = \max_{i, j=1, \ldots, r+s} |\log |\epsilon_j^{(i)}|| \). Then, for any real number \(T \)
we can find integers \(g_1, \ldots, g_{r+s} \) such that

\[-n^{-1} T - \frac{1}{2} C_1 \leq \sum_{j=1}^{r+s} g_j |\log \epsilon_j^{(i)}| < -n^{-1} T + \frac{1}{2} C_1, \]

\[(i = 1, \ldots, r+s), \]

and, since \(N(\epsilon_j) = 1 \),

\[T - \frac{n}{2} C_1 < \sum_{j=1}^{r+s} g_j |\log \epsilon_j| \leq T + \frac{n}{2} C_1. \]

Using (4) with the sign chosen so that \(\epsilon > 0 \), we obtain

\[|\epsilon^{(i)}| < C_2 n^{1/n} \]

with a constant \(C_2 = e^{C_1} \) which depends only on the ring \(R \). A unit
\(\epsilon > 1 \) which satisfies (5) will be called dominant. We have proved that
for every real \(T > 1 \) there is a dominant unit \(\epsilon \) satisfying \(T \leq |\epsilon| < C_2 T \).

The elements \(\delta \) of \(K \), such that \(S(\delta \beta) = a \) rational integer for every
\(\beta \) in \(M \), form another module \(D \). A basis \(\delta_0, \delta_1, \ldots, \delta_n \) of \(D \) is obtained
by solving the equations

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
RATIONAL APPROXIMATIONS TO ALGEBRAIC NUMBERS 199

(6) \[S(\beta, \delta_j) = \begin{cases} 1, & (i = j) \\ 0, & (i \neq j) \end{cases} \] (i, j = 0, \ldots, n).

Because of the discreteness of \(D \), there is, among the nonzero elements of \(D \), one whose norm has minimal absolute value; this minimal norm will be denoted by \(v \). Note also that if \(\rho \) is in \(R \) and \(\delta \) in \(D \) then \(\rho \delta \) is in \(D \).

Choose \(\delta = a_0 \delta_0 + a_1 \delta_1 + \cdots + a_n \delta_n \) in \(D \) so that \(\delta \beta_0 > 0 \) and g.c.d.\((a_0, a_1, \ldots, a_n) = 1 \). If \(\epsilon \) is a unit in \(R \) and \(\epsilon \delta = q_0 \delta_0 + q_1 \delta_1 + \cdots + q_n \delta_n \) we must have g.c.d.\((q_0, \ldots, q_n) = 1 \). If g.c.d.\((q_0, \ldots, q_n) = q_0 \), it is clear that \(q^{-1} \epsilon \delta \) is in \(D \), whence \(\epsilon^{-1} q^{-1} \epsilon \delta = q^{-1} \delta \) is in \(D \) and \(q \) divides g.c.d.\((a_0, \ldots, a_n) = 1 \).

As defined above, we have

(7) \[q_k = S(\epsilon \delta \beta_k), \quad (k = 0, \ldots, n). \]

Thus, if we assume that \(\epsilon \) is dominant, we have

\[
| q_k \beta_0 - q_0 \beta_k | = \left| \sum_{j=1}^{n} (\beta_k^{(j)} \beta_0 - \beta_k \beta_0^{(j)}) \delta^{(j)} \right|
< C_3 \epsilon^{-1/n}, \quad (k = 1, \ldots, n),
\]

while

\[
| q_0 - \epsilon \delta \beta_0 | = \left| \sum_{j=1}^{n} \epsilon^{(j)} \delta^{(j)} \beta_0^{(j)} \right| < C_4 \epsilon^{-1/n}.
\]

The last two inequalities imply (2). The constants \(C_3, C_4, C \) depend on \(a_0, \ldots, a_n, \) but we may remove this dependence if the choice of \(\delta \) is made from a fixed bounded region.

Suppose conversely that (1) and (2) hold (with some \(C > 0 \)). Define \(\xi = q_0 \delta_0 + \cdots + q_n \delta_n \), so that \(\xi \) is in \(D \). We have

\[
\xi^{(i)} = \frac{1}{\beta_0} \sum_{j=1}^{n} (q_j \beta_0 - q_0 \beta_j) \delta_j^{(i)} + \frac{q_0}{\beta_0} \sum_{j=0}^{n} \beta_j \delta_j^{(i)}, \quad (i = 0, \ldots, n).
\]

It follows easily from (6) that the last sum is 1 or 0 according as \(i = 0 \) or \(i \neq 0 \). Thus

\[
\left| \xi - \frac{q_0}{\beta_0} \right| = C q_0^{-1/n} \sum_{j=1}^{n} | \delta_j |,
\]

while

\[
| \xi^{(i)} | < C q_0^{-1/n} \sum_{j=1}^{n} | \delta_j^{(i)} |, \quad (i = 1, \ldots, n).
\]
Choose a dominant unit \(\epsilon \) such that \(\left| q_0/\beta_0 \right| \leq \epsilon < C_2 \left| q_0/\beta_0 \right| \) and set \(\delta = \pm \epsilon^{-1/2} \) with the sign chosen so that \(\delta > 0 \). Then
\[
0 < \delta < 1 + C \left| \beta_0 \right|^{-1} q_0^{-1/2} \sum_{j=1}^{n} |\delta_j|,
\]
while
\[
0 < |\delta^{(i)}| < C \left| \epsilon^{(i)} \right|^{-1} q_0^{-1/2} \sum_{j=1}^{n} |\delta_j^{(i)}|.
\]
Thus
\[
0 < |N(\delta)| < C^n \epsilon q_0^{-1} \prod_{i=1}^{n} \sum_{j=1}^{n} |\delta_j^{(i)}| (1 + O(q_0^{-1/2}))
\]
\[
< (C C_2)^n C_4,
\]
where \(C_4 \) depends only on \(\beta_0, \ldots, \beta_n \). It follows that \(\delta \) is an element of \(D \) which lies in a bounded region (which will be vacuous if \(C \leq v^{1/2}/C_4 C_4^{1/2} \)) and that the \(q_k \) are given by (7).

The proof of (3) is based on a special choice of \(\delta \) in (7) together with a sharper form of (5) for a certain infinite set of dominant units.

To obtain the latter, let
\[
\epsilon_k^{(j)} = \begin{cases} \epsilon_k^{-1/2} \epsilon^{(j)} e^{j \phi_{jk}} e^{j \psi_{jk}}, & (j = 1, \ldots, r), \\
\epsilon_k^{-1/2} \epsilon^{(j)} e^{j \phi_{jk} + \epsilon \psi_{jk}}, & (j = r + 1, \ldots, r + s),
\end{cases}
\]
where \(\phi_{jk} \) and \(\psi_{jk} \) are real and \(\epsilon^{jb} = \pm 1 \).

If the dominant unit \(\epsilon \) is given by (4) we have
\[
\left| \sum_{k=1}^{r+s} \epsilon_k g_k \right| = |\log | \epsilon^{1/2} \epsilon^{(j)} | < C_1, \quad (j = 1, \ldots, r + s).
\]

Also, we can find rational integers \(h_j \) such that
\[
(2\pi)^{-1} \arg \epsilon^{(j)} = \sum_{k=r+1}^{r+s} \psi_{jk} g_k + h_j \leq 1/2.
\]

Now there are at least \(M+1 \) distinct dominant units \(\epsilon \) in the interval \(1 \leq \epsilon < e^{(M+1)} C_1 \). By the well known schubfachprinzip of Dirichlet we may therefore find two—call them \(\eta \) and \(\theta \)—such that \(1 \leq \theta < \eta < e^{(M+1)} C_1 \),

\[
\left| \log \left| \eta^{1/2} \eta^{(j)} \right| - \log \left| \theta^{1/2} \theta^{(j)} \right| \right| < 2C_1/M^{(n-1)}, \quad (j = 2, \ldots, r + s)
\]
and
\[
\pi^{-1} |\arg \eta^{(j)} - \arg \theta^{(j)}| \leq M^{-1/(n-1)}, \quad (j = r + 1, \ldots, r + s).
\]
Thus the unit $e = \eta / \theta$ satisfies $1 < \epsilon < C_2^n T$ (where $T = e^{\mu n C_1}$) and
\[
| \log | \epsilon^{1/n} e^{(j)} | | < 2(C_1^n n/\log T)^{1/(n-1)}, \quad (j = 2, \ldots, r + s),
\]
\[
| \arg e^{(j)} | \leq 2\pi (C_1^n n/\log T)^{1/(n-1)}, \quad (j = r + 1, \ldots, r + s).
\]
Moreover, since
\[
\sum_{j=1}^{r} \log | \epsilon^{1/n} e^{(j)} | + 2 \sum_{j=r+1}^{r+s} \log | \epsilon^{1/n} e^{(j)} | = 0,
\]
we have also
\[
| \log | \epsilon^{1/n} e^{(1)} | | < 2(n - 1)(C_1^n n/\log T)^{1/(n-1)}.
\]
It follows that
\[
e^{(j)} = | \epsilon^{(j)} | \exp(i \arg e^{(j)}) = \epsilon^{-1/n}(1 + O(\log T)^{-1/(n-1)}),
\]
\[(j = 1, \ldots, r + s),
\]
which is the required refinement of (5).

If we choose $\delta = \delta_n$ in (7) and make use of (6) and (9) we can improve (8) as follows:
\[
| q_k^* \beta_0 - q_k^* \beta_k | = \epsilon^{-1/n} \left(\left| \sum_{j=1}^{n} (\beta_k^{(j)} \beta_0 - \beta_k \beta_0^{(j)}) \delta_n^{(j)} \right| + O(\log T)^{-1/(n-1)} \right)
\]
\[
= \begin{cases}
O(\epsilon^{-1/n}(\log T)^{-1/(n-1)}) & (k = 1, \ldots, n - 1) \\
O(\epsilon^{-1/n}) & (k = n).
\end{cases}
\]
This, together with $1 < \epsilon < C_2^n T$, implies (3).

Reference

Boston, Massachusetts