CONICAL SINGULAR POINTS OF DIFFEOMORPHISMS

BY WILLIAM HUEBSCB AND MARSTON MORSE

Communicated by Edwin Moise, May 27, 1961

1. Introduction. The Schoenflies extension Λ_ϕ of a differentiable mapping ϕ, constructed in the proof of Theorem 2.1 of [1], has at most a differential singularity of conical type (to be defined). This fact has far-reaching consequences which are reflected in the theorems of [2]. Theorem 1.1 below is one of these consequences. No proof of Theorem 1.1 is given here.

Let S be an $(n-1)$-sphere in a euclidean n-space E and let JS be the closed n-ball in E bounded by S.

THEOREM 1.1. Let z be an arbitrary point of S. A real analytic diffeomorphism f of S into E admits a homeomorphic extension, F, defined over a set $Z \cup \{z\}$, where Z is some open neighborhood of $JS - z$, and $F|Z$ is a real analytic diffeomorphism of Z into E.

This extension F of f defines an analytic diffeomorphism of its domain of definition with z deleted, and a homeomorphism with z included. F has no singularity on the interior of S, or on S, except at most at z.

We continue with a detailed exposition leading to a proof of Theorem 2.1.

NOTATION. Let E be the euclidean n-space of points (or vectors) x with rectangular coordinates (x_1, \ldots, x_n). Let $\|x\|$ be the distance of x from the origin O. Set

\[(1.1) \quad S = \{x \mid \|x\| = 1\}.\]

If M is a topological $(n-1)$-sphere in E, \bar{M} shall denote the open interior of M. The complement of a subset Y of E will be denoted by CY. We use diff as an abbreviation of diffeomorphism.

A C^n_diff, $m > 0$. Let $x \mapsto G(x)$ be a homeomorphism into E of an open neighborhood X of a point $z \in E$; if $G| (X - z)$ is a C^m-diff into E, G will be called a C^n_diff of X into E.

An admissible cone K_z. Let K_z be a closed n-cone in E with vertex z, and with sections orthogonal to A which are closed $(n-1)$-balls whose centers are on A. The cone K_z is determined by z, A and any one of its orthogonal sections meeting $A - z$.

A conical point z of G. Let G be a C^n_diff into E of an open neighborhood X of z. The point z will be said to be a conical point of G and
K, a cone of singular approach to z if there exists a \(C^m \)-diff \(\xi \) into \(E \) of some open neighborhood \(U \subset X \) of \(z \) such that
\[
G(x) = \xi(x) \quad (x \in U - K_z).
\]

On the supposition that \(z \) is a conical point of \(G \) we prove the following lemma.

Lemma 1.1. (i) If \(\mu \) is a \(C^m \)-diff into \(X \) of an open neighborhood \(Y \) of a point \(y \) such that \(\mu(y) = z \), then \(G\mu \) is a \(C^m \)-diff of \(Y \) into \(E \) with conical point \(y \).

(ii) If \(\theta \) is a \(C^m \)-diff of \(G(X) \) into \(E \), then \(\theta G \) is a \(C^m \)-diff of \(X \) into \(E \) with conical point \(z \).

Proof of (i). Suppose that \(G \) is represented on \(U - K_z \) as in (1.2). Let \(W \subset Y \) be an open neighborhood of \(y \) so small that \(\mu(W) \subset U \), and for some admissible cone \(K_y \)
\[
\mu(W - K_y) \subset U - K_z.
\]
Put \(\mu|_W = \mu_1 \). Then \(\xi \mu_1 \) is a \(C^m \)-diff of \(W \) into \(E \), and it follows from (1.2) and (1.3) that
\[
(G\mu)(x) = (\xi \mu_1)(x) \quad (x \in W - K_y).
\]

This partial representation (1.4) of \(G\mu \) shows that \(y \) is a conical point of the \(C^m \)-diff \(G\mu \). This establishes (i).

The proof of (ii) is immediate.

2. The principal theorem. In [1] there is given a \(C^m \)-diff \(\phi \) into \(E \) of a “shell” neighborhood \(\delta \) of \(S \) such that \(\phi \) carries points of \(\delta \) interior to \(S \) into points of \(E \) interior to the manifold \(\phi(S) \), and it is shown (see [1, Theorem 2.1]) that there exists an open neighborhood \(U \subset \delta \) of \(S \), a point \(z \in \mathcal{J}S \) and a \(C^m \)-diff \(\Lambda_\phi \) of \(U \cup \mathcal{J}S \) into \(E \) which extends \(\phi|_U \). The construction of \(\Lambda_\phi \) is carried through in [1] for the case in which \(\phi \) is special, in the sense that \(\phi \) reduces to the identity in the neighborhood of a point \(Q \) of \(S \). In this paper we supplement Theorem 2.1 of [1] by proving the following.

Theorem 2.1. The \(C^m \)-diff \(\Lambda_\phi \), as constructed in [1] for a “special” \(C^m \)-diff \(\phi \), has \(z \) as conical point.

To prove this theorem we review the necessary parts of the construction of \(\Lambda_\phi \) in [1].

The relevant subsets of \(E \). Let \(K \) be the open \(n \)-cube [1, p. 273]
\[
K = \{ x \mid -1 < x_i < 1; \ i = 1, \ldots, n \}.
\]
Let K' be the subrectangle of K on which $x_n < 0$. Subrectangles $H' \supset L' \supset G'$ of K' are introduced with faces parallel to those of K', of which H' and L' are open and G' closed, while

$$\text{Cl } H' \subset K', \quad \text{Cl } L' \subset H'. \tag{2.2}$$

Let $D = \{ x \mid -1 < x_i < 9; \ i = 1, \cdots, n \}$ and set $P = (8, 0, \cdots, 0)$.

A radial mapping R of E onto E. R is defined by the equations

$$y_1 - 8 = \frac{x_1 - 8}{2}; \quad y_j = \frac{x_j}{2} \quad (j = 2, \cdots, n) \tag{2.3}$$

and leaves P fixed. If R^r is the r-fold iterate of R and R^0 the identity, the space E admits a trivial partition

$$E = \bigcup_{r=0}^{\infty} R^r(K) \cup P \cup A \quad \text{(Cf. (5.1) of [1])} \tag{2.4}$$

provided A is suitably chosen.

The mapping T. If B is a bounded subset of E, $\text{Int } B$ shall denote the smallest n-rectangle Π in E with faces parallel to the coordinate $(n-1)$-planes and such that $\Pi \supset B$. In §6 of [1], a C^∞-diff T of E onto E is defined. For us the essential properties of T are that

$$RT(K) \cap T(K) = \varnothing, \quad T(K) \subset \text{Int}(K \cup RK). \tag{2.5}$$

One sets $T_{r+1} = R^r T$, $r = 0, 1, \cdots$.

The cone K_P. Let K_P be the smallest admissible cone with vertex P, with axis the segment of the x_1-axis on which $x_1 \leq 8$, and with $K_P \supset \text{Int}(K \cup RK)$. One sees that

$$K_P \supset T_r(K) \cup G' \quad (r = 1, 2, \cdots). \tag{2.6}$$

The contraction α. This is a C^∞-diff of D onto H' which leaves L' pointwise invariant [1, p. 274]. We infer that $\alpha(P) \in H' - \text{Cl } L'$.

The reflection t. The point Q is the intersection of the positive x_n-axis with S. Let S_Q be an $(n-1)$-sphere with center Q and diameter $p < 1$, so small that $\phi|JS_Q$ reduces to the identity. Let t be the reflection of $E - Q$ in S_Q [1, p. 272].

The C^m-diff ω. The domain of definition of ω includes $H' - G'$, and so is an open neighborhood of $\alpha(P)$. Cf. p. 273 of [1].

The mapping ω. By Lemma 5.1 of [1], the domain of ω includes A, and $\omega(x) = x$ on A.

The mapping σ. By Lemma 7.2 of [1] σ is a C^m-diff of CG' into E. By this lemma and (2.6), $\sigma(x) = \omega(x)$ for $x \in CK_P$. Since $CK_P \subset A$ by (2.4), $\sigma(x) = x$ for $x \in CK_P$. Hence P is a conical point of σ.

The mapping λ_a. For present purposes λ_a is a mapping for which (cf. (3.6) of [1])

$$
(\lambda_a)(x) = \omega(a(\sigma^{-1}(x))) \quad (x \in \sigma(D - G')).
$$

We verify that P is a conical point of λ_a. The domain of x in (2.7) is open. It contains P since $P \in D - G'$ and $\sigma(P) = P$. Now σ^{-1} maps $\sigma(D - G')$, as a C^p-diff, onto $D - G'$, with P a conical point of σ^{-1}. Moreover $a(D - G') = H' - G'$, while ω operates as a C^m-diff on $H' - G'$. Returning to (2.7) observe that λ_a defines a C^p-diff of $\sigma(D - G')$ into E. It follows from Lemma 1.1 (ii) and (2.7) that P is a conical point of λ_a.

Completion of Proof of Theorem 2.1. In accord with the line following (7.19) of [1] and line -13 on p. 275 in [1], $z = t(a(P))$. By (7.22) of [1]

$$
(2.8) \quad \Lambda_\phi(x) = t(\lambda_a(t(x))) \quad (x \in t(H'))
$$

(cf. [1, lines 2–3, p. 287]) so that if one sets $\mu(x) = a^{-1}(t(x))$ for $x \in t(H')$

$$
(2.9) \quad \Lambda_\phi(x) = [t(\lambda_a)\mu](x) \quad (x \in t(H')).
$$

We now apply Lemma 1.1. The C^ω-diff $x \mapsto \mu(x)$ of $t(H')$ into E maps z into P, since $z = t(a(P))$. From Lemma 1.1 and (2.9) we can then infer that z is a conical point of Λ_ϕ, since P is a conical point of λ_a.

This establishes Theorem 2.1.

The generality of singularities of conical type is evidenced by the following theorem. Cf. [2].

Theorem 2.2. Let F be an arbitrary C^ω-diffeomorphism into E of an open subset $X \subset E$. There exists a C^ω-diffeomorphism F^* of X into E for which z is a conical point and which is such that $F^*(x) = F(x)$ except at most in an arbitrarily small prescribed neighborhood of z.

References

Institute for Advanced Study