1. Introduction. The Schoenflies extension A_ϕ of a differentiable mapping ϕ, constructed in the proof of Theorem 2.1 of [1], has at most a differential singularity of conical type (to be defined). This fact has far-reaching consequences which are reflected in the theorems of [2]. Theorem 1.1 below is one of these consequences. No proof of Theorem 1.1 is given here.

Let S be an $(n - 1)$-sphere in a euclidean n-space E and let JS be the closed n-ball in E bounded by S.

Theorem 1.1. Let z be an arbitrary point of S. A real analytic diffeomorphism f of S into E admits a homeomorphic extension, F, defined over a set $Z \cup z$, where Z is some open neighborhood of $JS - z$, and $F|Z$ is a real analytic diffeomorphism of Z into E.

This extension F of f defines an analytic diffeomorphism of its domain of definition with z deleted, and a homeomorphism with z included. F has no singularity on the interior of S, or on S, except at most at z.

We continue with a detailed exposition leading to a proof of Theorem 2.1.

Notation. Let E be the euclidean n-space of points (or vectors) x with rectangular coordinates (x_1, \cdots, x_n). Let $\|x\|$ be the distance of x from the origin O. Set

\[(1.1) \quad S = \{x : \|x\| = 1\}.\]

If M is a topological $(n - 1)$-sphere in E, $\mathcal{J}M$ shall denote the open interior of M. The complement of a subset Y of E will be denoted by CY. We use diff as an abbreviation of diffeomorphism.

A C^m-diff, $m > 0$. Let $x \mapsto G(x)$ be a homeomorphism into E of an open neighborhood X of a point $z \in E$; if $G|(X - z)$ is a C^m-diff into E, G will be called a C^m-diff of X into E.

An admissible cone K_z. Let K_z be a closed n-cone in E with vertex z, and with sections orthogonal to A which are closed $(n - 1)$-balls whose centers are on A. The cone K_z is determined by z, A and any one of its orthogonal sections meeting $A - z$.

A conical point z of G. Let G be a C^m-diff into E of an open neighborhood X of z. The point z will be said to be a conical point of G and
Conical Singular Points of Diffeomorphisms

K_z, a cone of singular approach to z if there exists a C^m-diff ξ into E of some open neighborhood $U \subset X$ of z such that

$$G(x) = \xi(x) \quad (x \in U - K_z).$$

On the supposition that z is a conical point of G we prove the following lemma.

Lemma 1.1. (i) If μ is a C^m-diff into X of an open neighborhood Y of a point y such that $\mu(y) = z$, then $G\mu$ is a C^m_y-diff of Y into E with conical point y.

(ii) If θ is a C^m-diff of $G(X)$ into E, then θG is a C^m_y-diff of X into E with conical point z.

Proof of (i). Suppose that G is represented on $U - K_z$ as in (1.2). Let $W \subset Y$ be an open neighborhood of y so small that $\mu(W) \subset U$, and for some admissible cone K_y

$$\mu(W - K_y) \subset U - K_z.$$

Put $\mu|_W = \mu_1$. Then ξ_μ_1 is a C^m-diff of W into E, and it follows from (1.2) and (1.3) that

$$(G\mu)(x) = (\xi_\mu_1)(x) \quad (x \in W - K_y).$$

This partial representation (1.4) of $G\mu$ shows that y is a conical point of the C^m_y-diff $G\mu$. This establishes (i).

The proof of (ii) is immediate.

2. **The principal theorem.** In [1] there is given a C^m-diff ϕ into E of a "shell" neighborhood δ_α of S such that ϕ carries points of δ_α interior to S into points of E interior to the manifold $\phi(S)$, and it is shown (see [1, Theorem 2.1]) that there exists an open neighborhood $U \subset \delta_\alpha$ of S, a point $z \in \partial S$ and a C^m_α-diff Λ_ϕ of $U \cup \partial S$ into E which extends $\phi|_U$. The construction of Λ_ϕ is carried through in [1] for the case in which ϕ is special, in the sense that ϕ reduces to the identity in the neighborhood of a point Q of S. In this paper we supplement Theorem 2.1 of [1] by proving the following.

Theorem 2.1. The C^m_α-diff Λ_ϕ, as constructed in [1] for a "special" C^m-diff ϕ, has z as conical point.

To prove this theorem we review the necessary parts of the construction of Λ_ϕ in [1].

The relevant subsets of E. Let K be the open n-cube [1, p. 273]

$$K = \{x^i \mid -1 < x^i < 1; i = 1, \cdots, n\}.$$
Let K' be the subrectangle of K on which $x_n < 0$. Subrectangles $H' \supset L' \supseteq G'$ of K' are introduced with faces parallel to those of K', of which H' and L' are open and G' closed, while

\begin{equation}
\text{Cl } H' \subset K', \quad \text{Cl } L' \subset H'.
\end{equation}

Let $D = \{ x \mid -1 < x_i < 9; \ i = 1, \ldots, n \}$ and set $P = (8, 0, \ldots, 0)$. A radial mapping R of E onto E. R is defined by the equations

\begin{equation}
y_1 - 8 = \frac{x_1 - 8}{2}; \quad y_j = \frac{x_j}{2} \quad (j = 2, \ldots, n)
\end{equation}

and leaves P fixed. If R^r is the r-fold iterate of R and R^0 the identity, the space E admits a trivial partition

\begin{equation}
E = \bigcup_{r=0}^{\infty} R^r(K) \cup P \cup A \quad (\text{Cf. (5.1) of [1]})
\end{equation}

provided A is suitably chosen.

The mapping T. If B is a bounded subset of E, $\text{Int } B$ shall denote the smallest n-rectangle Π in E with faces parallel to the coordinate $(n-1)$-planes and such that $\Pi \supset B$. In §6 of [1], a C^∞-diff T of E onto E is defined. For us the essential properties of T are that

\begin{equation}
RT(K) \cap T(K) = \emptyset, \quad T(K) \subset \text{Int}(\overline{K} \cup R\overline{K}).
\end{equation}

One sets $T_{r+1} = R^r T$, $r = 0, 1, \ldots$.

The cone K_P. Let K_P be the smallest admissible cone with vertex P, with axis the segment of the x_1-axis on which $x_1 \leq 8$, and with $K_P \supset \text{Int}(\overline{K} \cup R\overline{K})$. One sees that

\begin{equation}
K_P \supset T_r(K) \cup G' \quad (r = 1, 2, \ldots).
\end{equation}

The contraction a. This is a C^∞-diff of D onto H' which leaves L' pointwise invariant [1, p. 274]. We infer that $a(P) \in H' - \text{Cl } L'$.

The reflection t. The point Q is the intersection of the positive x_n-axis with S. Let S_Q be an $(n-1)$-sphere with center Q and diameter $p < 1$, so small that $\phi|_{JS_Q}$ reduces to the identity. Let t be the reflection of $E - Q$ in S_Q [1, p. 272].

The C^n-diff ω. The domain of definition of ω includes $H' - G'$, and so is an open neighborhood of $a(P)$. Cf. p. 273 of [1].

The mapping ω. By Lemma 5.1 of [1], the domain of ω includes A, and $\omega(x) = x$ on A.

The mapping σ. By Lemma 7.2 of [1] σ is a C^∞-diff of CG' into E. By this lemma and (2.6), $\sigma(x) = \omega(x)$ for $x \in CK_P$. Since $CK_P \subset A$ by (2.4), $\sigma(x) = x$ for $x \in CK_P$. Hence P is a conical point of σ.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The mapping $\lambda \omega a$. For present purposes $\lambda \omega a$ is a mapping for which (cf. (3.6) of [1])

\begin{equation}
(\lambda \omega a)(x) = \omega(a(\sigma^{-1}(x))) \quad (x \in \sigma(D - G')).
\end{equation}

We verify that P is a conical point of $\lambda \omega a$. The domain of x in (2.7) is open. It contains P since $P \subseteq D - G'$ and $\sigma(P) = P$. Now σ^{-1} maps $\sigma(D - G')$, as a C^p-diff, onto $D - G'$, with P a conical point of σ^{-1}. Moreover $a(D - G') = H' - G'$, while ω operates as a C^m-diff on $H' - G'$. Returning to (2.7) observe that $\lambda \omega a$ defines a C^p-diff of $\sigma(D - G')$ into E. It follows from Lemma 1.1 (ii) and (2.7) that P is a conical point of $\lambda \omega a$.

Completion of proof of Theorem 2.1. In accord with the line following (7.19) of [1] and line -13 on p. 275 in [1], $s = t(a(P))$. By (7.22)" of [1]

\begin{equation}
\Delta_{\phi}(x) = t(\lambda \omega(t(x))) \quad (x \in t(H'))
\end{equation}

(cf. [1, lines 2–3, p. 287]) so that if one sets $\mu(x) = a^{-1}(t(x))$ for $x \in t(H')$

\begin{equation}
\Delta_{\phi}(x) = [t(\lambda \omega a)\mu](x) \quad (x \in t(H')).
\end{equation}

We now apply Lemma 1.1. The C^m-diff $x \mapsto \mu(x)$ of $t(H')$ into E maps z into P, since $z = t(a(P))$. From Lemma 1.1 and (2.9) we can then infer that z is a conical point of Δ_{ϕ}, since P is a conical point of $\lambda \omega a$.

This establishes Theorem 2.1.

The generality of singularities of conical type is evidenced by the following theorem. Cf. [2].

Theorem 2.2. Let F be an arbitrary C^p-diffeomorphism into E of an open subset $X \subseteq E$. There exists a C^p-diffeomorphism F^* of X into E for which z is a conical point and which is such that $F^*(x) = F(x)$ except at most in an arbitrarily small prescribed neighborhood of z.

References