COHOMOLOGY OF MAXIMAL IDEAL SPACES

BY ANDREW BROWDER

Communicated by I. M. Singer, July 14, 1961

Let A be a commutative Banach algebra with unit, and let M be the maximal ideal space of A. We say that A is generated by x_1, \ldots, x_n if the polynomials $p(x_1, \ldots, x_n)$ form a dense subalgebra of A. Let $H^j(M, C)$ denote the jth Čech cohomology group of M with complex coefficients.

Theorem. If A is generated by n elements, then $H^j(M, C) = 0$ for $j \geq n$.

Proof. If x_1, \ldots, x_n generate A, then the map of M into C^n given by $h \mapsto (h(x_1), \ldots, h(x_n))$ is a homeomorphism of M onto a compact set K. It is known (see, e.g., [1]) that K is polynomially convex, i.e., if V is any open set containing K, there exists an analytic polyhedron U defined by polynomials, such that $K \subset U \subset V$. Each such polyhedron U is a domain of holomorphy (Stein manifold) and a Runge domain. For any n-dimensional Stein manifold U, it is known that $H^j(U, C) = 0$ for $j > n$. (See [2] for a proof.) For any Runge domain U in C^n, Serre has shown [3] that $H^n(U, C) = 0$. The proof is completed by observing the following nonstandard but elementary continuity property of Čech cohomology:

Fact. Let X be a compact subset of a metric space, G an abelian group, j a non-negative integer. If for every open set $V \supset K$, there exists an open U with $K \subset U \subset V$ and $H^j(U, G) = 0$, then $H^j(K, G) = 0$.

Corollary. Let M be an n-dimensional compact orientable manifold. Let $C(M)$ denote the ring of all continuous complex-valued functions on M, normed by the sup norm. Then $C(M)$ requires at least $n+1$ generators.

Remarks. 1. For $n=1$, the condition of the theorem is both necessary and sufficient; a compact subset K of the plane is polynomially convex if and only if K has connected complement, which is equivalent to $H^1(K, C) = 0$.

2. It is of course trivial that at least $n+1$ real-valued functions are required to generate $C(M)$ when M is a compact n-dimensional manifold, but it should be observed that in general, a compact space X need not require as many complex functions to generate $C(X)$ as it does real functions. Example: If X is a compact connected plane set

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
with no interior and connected complement, $C(X)$ is generated by the single function z (Mergelyan's theorem); but $C(X)$ is generated by a single real function if and only if X is a Jordan arc.

3. The author is unaware of any other proof of the corollary even for the case M the two-sphere.

References

Brown University