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The purpose of the book under review is to arrive at the theory of 
the spinor genus by elementary methods, i.e. using matrix calculus 
and assuming some knowledge of elementary number theory. What
ever is needed from the arithmetic theory of quadratic forms is de
fined and proved. The development takes place in three main parts: 
local and global field equivalence, integral p-adic equivalence and 
the genus, and finally the spinor genus. 

Chapters 1-3 give the Hasse-Minkowski theory of fractional equivalence. The 
fundamental result that a global form represents 0 if and only if it does so locally 
everywhere is proved by reduction theory and Dirichlet's theorem on primes in an 
arithmetic progression. 

Chapters 4-5 discuss local integral theory and the genus. Included is an important 
theorem on the integers represented by an indefinite form in a t least four variables. 

Chapters 6-8 do the spinor genus. The difficult part here is to establish the rela
tions between els ƒ, spn ƒ, and gen ƒ. Much time is also spent on rounding out the 
picture with additional results, some of them new. 

The book suffers from an exasperating conceptual deficiency. Too 
often a formula or device is used to circumvent the introduction of an 
idea. Surely there is no longer any need to shy away from groups and 
vector spaces. And in a field that is so intimately concerned with ques
tions of linearity, is it right to do so? Isn't it really better, and indeed 
simpler, to use £-adic numbers instead of families of congruences? 
We can sympathize with the author's efforts to keep out superfluous 
structure, but the criterion used in doing so should be conceptual, 
not just logical, necessity. 

However, these are small matters. The important thing is that the 
author has contributed an ordered account of significant results in a 
field with a long history and a totally inadequate literature. The book 
will be read by people interested in quadratic forms, and it should 
provide an accessible reference for those who are interested in the 
applications. 

O. T. O ' M E A R A 

Fondements de la topologie générale. By Âkos Csâszâr. Akadémiai 
Kiadó, Budapest, 1960. 231 pp. $6.00. 

The author's goal is to treat uniform, proximity, and topological 
spaces from a common viewpoint. He accomplishes this by develop
ing a very general theory of "syntopogenic structures" in which uni
formities, proximities, and topologies emerge as particular cases. The 
idea is simple and interesting. A syntopogenic structure on a set E 
is a family of (partial) ordering relations on P{E) satisfying certain 
natural conditions. The family defining a topology, for example, 
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consists of a single relation < , with A <B meaning that A is con
tained in the interior of B. 

The subject is presented in exhaustive detail, but an excellent sum
mary is included in the introduction. Formal prerequisites are mini
mal. Starting with a review of elementary facts about relations in 
general, the book continues through sixteen sections of painstaking 
discussion of "semi-topogenic," "topogenic," "perfect/' "biperfect," 
"simple," and "symmetric" orders or structures, and of generaliza
tions to them of the definitions and main theorems about continuity, 
product spaces, separation axioms, convergence of filter bases, com
pletion, and compactification. For example, arbitrary products of 
complete [compact] syntopogenic structures are complete [com
pact] . There is even the theorem, due to J. Czipszer, that every 
syntopogenic structure is induced by a family of "upper semi-con
tinuous" real-valued functions, i.e., f unctions continuous with respect 
to a structure on R defined in terms of < e (e > 0), where 

(a) A < € B if sup A + e ^ inf (R - B). 

One who wishes to investigate the subject further will find the basic 
work all done, formally recorded, and easy to locate. The book con
tains a helpful index of terminology, axioms, and special notation, 
the last containing nearly 100 entries. The numbering scheme for 
theorems and displays is simple, and the numbers are included with 
the section titles and numbers in the page headings. Most of the 
facts cited in the proofs are accompanied by back references. These 
aids also allow a reader to pass over much of the routine spadework, 
knowing that he will be able to find things quickly if he should ever 
need them. 

The rest of this review presents details leading to the familiar struc
tures. Let E be a set. A topogenic order—for brevity, an order—on E 
is a relation < on P(E) satisfying; 

(1) 0 < 0, E < E, 

(2) A < B implies A C B} 

(3) A C A' < B' C B implies A < B 

(so far, a "semi-topogenic" order), and 

(4) A < B and A' < B' implies A VJ A' < B KJ B' and 

A C\ A' < B H B'. 

By (2), A <B and B <A implies A =B; by (2) and (3), < is transi
tive. 
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To see how such an order may be generated, consider a family of 
subsets of E that is closed under finite union and finite intersection 
(i.e., a sublattice of P(E) containing 0 and E)—for brevity, a lattice. 
Each lattice 9 generates an order < = 0 ( Q ) [reviewer's notation] 
defined by 

(b) A < B if there exists G G 9 such that A CGCB; 

it then follows that 

(c) 9 = {G:G<G}. 

Conversely, each order < determines a lattice Q = L(<) [reviewer's 
notation] defined by (c). Furthermore, 

(d) L(0(Q)) = 9 

and 

(e) 0 ( £ « ) ) C <• 

The inclusion in (e) may be proper. Thus, every lattice is induced by 
an order, but there exist orders that are not generated by any lattice 
—for example, the order <« defined in (a). 

An order < is said to be perfect if Ai<Bi implies U» Ai<\Ji Bi 
(over arbitrary index sets), biperfect if the preceding holds as well for 
intersections, symmetric if A <B implies E—B<E — A. (Note that 
this is not the same as symmetry of < as a relation.) Trivially, per
fect and symmetric implies biperfect. I t is clear that these types of 
orders are quite special. Indeed, the biperfect orders < on E are in 
one-one correspondence with the reflexive relations U on E, accord
ing to: 

(f) x U y if and only if {#} < E — {y} 

and 

(g) A < B if and only if x G A and x U y implies y G B. 

(Thus, the biperfect ordering relations on the subsets of E are expres
sible in terms of the elements of £.) 

A syntopogenic structure—for brevity, a structure—on E is a family 
S of orders directed by C and such that each member is contained in 
the square of some member, i.e. : 

for < ' G S and < / / £ § , there exists < G S such that 

A <' B and A < " B implies A < B, 

and 
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for < G S, there exists < ' G S such that 4 < B implies 
(6) 

,4 < ' C < ' £ for some C. 

A structure is called perfect, biperfect, or symmetric in case all its 
members are perfect, biperfect, or symmetric, respectively. A struc
ture with just one member is simple. (Here, (6) reduces to : < 2 = <.) 
The family { C } is an obvious example of a simple, perfect, sym
metric structure. Conversely, if { < } is perfect and symmetric, then 
the associated relation U of (f) proves to be an equivalence (transitiv
ity following from (6)), and </U is set inclusion on E/U. 

The familiar structures arise from taking the three main conditions 
two at a time : 

simple and perfect «-» topology, 

simple and symmetric <-> proximity, 

oerfect and symmetric <-> uniformity. 

Specifically, if { < } is perfect, then the family g of (c) is evidently 
a topology on E; moreover, it turns out (with the help of (6)) that 
equality holds in (e). Conversely, if g is a topology, then the order 
generated by g is perfect. Thus, there is a one-one correspondence 
between topologies and simple perfect structures on E. Note that 
A <B means that B is a neighborhood of A. 

Next, if { < } is symmetric, define A8B ("A is near B") to mean 
A<E-B. Then A8B impjies BOA; (A\JB)ÔC if and only if AÔC or 
BÔC; {x}ô{x} ; AôO; if ASB, there exist U, V such that Aô(E- U), 
Bö(E — V), and Ur\V = Q. These are the axioms for a general proxim
ity. (To ensure that x^y implies {x} ô {y}, as required in Efromovic's 
definition of proximity, one introduces a "TV* separation axiom: if 
Xy^y, then {x} <E— {y} or y <E— {x}.) Conversely, given a general 
proximity ô, let A <B mean A6(E—B)\ then { < } is a symmetric 
structure. The simple symmetric structures are in obvious one-one 
correspondence with the general proximities on E. 

Finally, consider a perfect symmetric structure S. For each < G $ , 
consider the relation [/= U< defined in (f); let "IL denote the family 
of all such U. Then each member of SX is reflexive and symmetric, 
Si is directed by D , and each member of °U contains the square of 
some member. Therefore SI is a base of symmetric entourages for a 
uniformity. Conversely, let Si be a symmetric base for a uniformity. 
For each t/G'U, define < by (g) ; then the family of all such < is a 
perfect symmetric structure. The correspondence between symmetric 
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bases and perfect symmetric structures is one-one. Note that A<B 
means that B contains the neighborhood of A of order £/<. 

The passage from uniformity to proximity to topology goes this 
way. If S is perfect and symmetric, then { < } = {VJS} is (simple and) 
symmetric; and if A <fB means that {x} <B for all x(EA, then { < ' } 
is (simple and) perfect. 

The familiar discrete structures are obtained from the family { C } • 
The usual uniformity on R is obtained from { < c : €>0} [reviewers 
notation], where A <*B means dist (^4, R — B)^€. (The associated 
relations U€ of (f) then satisfy: xUey if and only if |x— y\ <e.) 

LEONARD GILLMAN 

RESEARCH PROBLEM 

28. Frank Harary. Matrix theory. 

Prove or disprove the following conjecture suggested by J. Self-
ridge (oral communication). For any graph G with 9 points, G or its 
complementary graph G is nonplanar. Experimental evidence ap
pears to support this conjecture, which in turn would imply the 
validity of the conclusion for any graph with at least 9 points. A 
simple argument using Euler's polyhedron formula serves to prove 
that if G is a graph with p points and q lines for which q>3p — 6f then 
G is nonplanar. This proves the conclusion of the conjecture for all 
graphs with at least 11 points. For graphs G with 9 or 10 points, it 
is still open. (Received August 15, 1961.) 


