1. Introduction. Fränkl and Pontrjagin [1] and Seifert [2] have shown that for any given family of disjoint polyhedral simple closed curves in three-space, there can always be found a polyhedral orientable surface in three-space whose boundary consists precisely of the given curves. The following theorem extends this result to surfaces in four-space.

Theorem 1. Let M^2 be a locally flat, polyhedral, closed orientable surface (not necessarily connected) in Euclidean four-space, R^4. Then there is an orientable polyhedral three-manifold, M^3, in R^4, whose boundary is M^2.

Local flatness means that for each vertex v of M^2, the link of v on M^2 (a simple closed curve) is unknotted in the link of v in R^4 (a three-sphere). This condition is purely local and absolutely necessary. On the other hand, the restriction to orientable surfaces is required by the nature of the proof, and I do not know whether nonorientable surfaces of even characteristic in four-space bound nonorientable three-manifolds in four-space.

2. Outline of the proof. M^3 is first deformed so that its intersections with the horizontal hyperplanes $R^3_t = \{(x_1, x_2, x_3, x_4): x_4 = t\}$ are as simple as possible. What we have in mind is to find orientable surfaces in the R^3_t whose boundaries are precisely $M^2 \cap R^3_t$, in such a continuous way that when considered together they form an orientable three-manifold M^2 whose boundary is M^2. The process is carried out with decreasing t, and the local flatness of M^2 assures us that the construction can be begun. As t decreases, $M^2 \cap R^3_t$ changes isotopically, except at a finite number of singular values of t. A slight deformation of M^3 insures that we need only consider hyperbolic transformations, in which two arcs come together at a midpoint and then separate like the cross-sections of a saddle surface, and elliptic transformations, in which a simple closed curve shrinks to a point and then disappears (or vice versa). In the hyperbolic case, these arcs already form part

1 The author is a National Science Foundation Predoctoral Fellow and wishes to thank Professor Ralph Fox for his help in the preparation of this paper. The detailed arguments are contained in the author's thesis.

2 Added in proof. This case is considered in a forthcoming paper.
of the boundary of a cross-sectional surface and the hyperbolic transformation could be extended to the surface in the natural way, except for the possibility of a number of sheets of the surface being in the way. These sheets are simply pierced one after the other with decreasing t, the cuts being joined as in [3, page 4], to preserve orientability of the cross-sections. Finally, when no more sheets are in the way, the original hyperbolic transformation is extended to the cross-sectional surface. That this final transformation does not destroy the orientability of the cross-sections requires a special argument.

In the case of the elliptic transformations, if with decreasing t a point opens up into a simple closed curve (which must be unknotted by the local flatness of M^3), then we simply introduce another component of the cross-sectional surface which with decreasing t opens up from a point into a two-cell. The serious case occurs when a component of $M^3 \cap R^3$ shrinks to a point and then disappears with decreasing t. Call this component c_1, and let c_2, \ldots, c_k be the other boundary curves of the component G of the cross-sectional surface containing c_1. Since c_1 is unknotted by the local flatness of M^3, let D be a polyhedral two-cell in R^3 bounded by c_1. Let c' be a simple closed curve on G lying in a small neighborhood of c_1 and "parallel" to c_1. Because the cross-sectional surface, and hence G is orientable, the linking number of c' with c_1 is the same as the sum of the linking numbers of the c_2, \ldots, c_k with c_1. But each of these linking numbers is zero, since c_1 is about to shrink to a point away from all these curves. Because the linking number of c' with c_1 is zero, the cross-sectional surface can be deformed so that a small neighborhood of c_1 on G meets D only at c_1, while the total intersection of the cross-sectional surface with D consists of a number of simple closed curves. Each of these intersections can be removed by standard hyperbolic transformations with decreasing t, until finally D meets the cross-sectional surface only at its boundary curve c_1. By a slight deformation of M^3, the original elliptic transformation can be altered so as to shrink c_1 to a point along D, closing up a component of the cross-sectional surface and completing the construction for the elliptic transformation. When finally t has decreased below the minimum value attained by the fourth coordinates of points of M^3, the cross-sectional surface consists of a number of closed orientable surfaces in a three-dimensional hyperplane R^3. It remains to shrink off the components of this surface to points with decreasing t. If the resulting M^3 is to be a manifold, this must be done by first changing these components into two-spheres. But R. H. Fox has shown in [4, Theorem 2] that whenever we are given a number of polyhedral...
closed orientable surfaces in three-space, not all of which are two-
spheres, a hyperbolic transformation may be found which either de­
creases the total genus or else increases the number of components
with positive genus while leaving the total genus unaltered. We carry
out such a transformation with decreasing t, and repeat the procedure
until all the components of the cross-sectional surface are two-
spheres, which may then be shrunk to points as t decreases further,
completing the construction of M^3.

As the various transformations undergone by the cross-sectional
surfaces are topologically equivalent to those experienced by a cross-
section of a hypersurface in R^4 (with due regard being taken of the
fact that M^3 has a boundary), it is easily seen that M^3 is a manifold.
Furthermore, since the cross-sections are orientable and the various
transformations preserve orientations, M^3 is also orientable.

R. H. Bing has pointed out to me that if we are willing to allow a
three-dimensional cross-section, then the argument can be completed
as soon as the cross-sectional surface becomes closed, for every closed
surface in three-space, whether connected or not, is the boundary of
a three-dimensional region.

References

1. F. Fränkl and L. Pontrjagin, Ein Knotensatz mit Anwendung auf die Dimen-
592.
3. C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of
4. R. H. Fox, On the imbedding of polyhedra in 3-space, Ann. of Math. vol. 49

Princeton University