The purpose of the present note is to sketch a solution for the problem of determining the form of all isometries of any reflexive Orlicz space.¹ A partial result in that direction was obtained earlier by J. Lamperti [4] (who suggested this problem to us recently). The ideas of the proof are very closely related to those used recently by the author to develop a unified and slightly extended theory (unpublished) [6] for the classical results of Banach [1], Stone [8] and Kadison [2] (see also [4]) on isometries of $C(X)$, L_p spaces, and C^* algebras. The systematic use of semi-inner-product spaces, and generalized hermitians [5], plays a central role. A semi-inner-product space, is a vector space X on which there is defined a (complex valued) form $[x, y]$ satisfying:

(i) Linearity in x,
(ii) $[x, x] > 0$ if $x \neq 0$,
(iii) $|[x, y]|^2 \leq [x, x][y, y]$.

X is then normed under $\|x\| = [x, x]^{1/2}$.

From now on, X is a reflexive Orlicz space [7; 3] whose unit sphere is the set \{ $f \in X$: $\int \phi(|f|) \leq 1$ \}. It is somewhat laborious but not very difficult to show that the semi-inner-product for X is given by:

$$[f, g] = C(g) \int f \phi\left(\left| \frac{g}{\|g\|} \right| \right) \operatorname{sgn} g$$

where

$$\operatorname{sgn} g = \begin{cases} \left| \frac{g}{\|g\|} \right| & \text{if } g \neq 0, \\ g & \text{if } g = 0 \end{cases}$$

with $C(g) = \left(\int g \phi\left(\left| \frac{g}{\|g\|} \right| \right) \operatorname{sgn} g \right)^{-1} |g|^2$, when g is such that the measure of \{ $\xi \in \Omega$: ϕ has no derivative at the point $|g(\xi)|/\|g\|$ \} is 0.

A bounded hermitian operator (see [5]) satisfies by definition $[Hf, f] = \text{real for all } f \in X$.

Proposition 1. If h is real valued and in $L_\infty(\Omega)$, $Hf = hf$ defines a hermitian operator on X, and $\|H\| = \|h\|_\infty$. ¹ Actually the proof sketched below covers the Orlicz spaces over measure spaces containing no atoms. If the measure space contains atoms, further argument is needed.
THEOREM 2. If X is different from $L_2(\Omega)$, H is a bounded hermitian on X, then there is a real valued $h \in L_\infty(\Omega)$ such that $Hf = hf$ for all $f \in X$, and $\|H\| = \|h\|_\infty$.

SKETCH OF THE PROOF. If u and v are in X, and have disjoint supports, Ω_1 and Ω_2, then $\text{Im} \left[H(e^{i\alpha u} + e^{i\beta v}), e^{i\alpha u} + e^{i\beta v} \right] = 0$. α, β real and arbitrary lead to.

$$\int_{\Omega_2} H u \phi'(\frac{|v|}{\|v\|}) \text{ sgn } v = \left\{ \int_{\Omega_1} H v \phi'(\frac{|u|}{\|u\|}) \text{ sgn } u \right\}.$$

One applies this to $u_2 = \alpha \chi_{\Omega_1}, u_3 = \beta \chi_{\Omega_1}, u_1 = (\alpha + \beta) \chi_{\Omega_1}$ and $v = \chi_{\Omega_2}/\|\chi_{\Omega_2}\|$, where χ_Ω denotes the characteristic function of the measurable set Ω. One arrives finally at:

$$\left[\phi'\left(\frac{\alpha + \beta}{\lambda_1}\right) - \frac{\phi'\left(\frac{1}{\lambda_1}\right)}{\phi'\left(\frac{1}{\lambda_2}\right)} \phi'\left(\frac{\alpha}{\lambda_2}\right) - \frac{\phi'\left(\frac{1}{\lambda_1}\right)}{\phi'\left(\frac{1}{\lambda_3}\right)} \phi'\left(\frac{\beta}{\lambda_3}\right) \right] \int_{\Omega_1} H v = 0$$

where $\lambda_1 = \|u_1 + u_2 + v\|, \lambda_2 = \|u_1 + v\|, \lambda_3 = \|u_2 + v\|$, $\alpha, \beta > 0$ arbitrary Ω_1, Ω_2 and v fixed. Letting the measure of Ω_1 tend to 0 in a convenient manner λ_1, λ_2 and λ_3 tend to $\|v\| = 1$, so that either $\phi'(\alpha + \beta) = \phi'(\alpha) + \phi'(\beta)$ (i.e., $\phi(\alpha) = k\alpha^2$ and X is $L_2(\Omega)$) or else Hv is 0 on Ω_3. From this follows that if $f \in X$ is a step function and Ω_0 the support of one step, $H(f - f(\Omega_0) 1)$ is 0 on Ω_0, hence $Hf = hf$, where $h = H1$. The rest is immediate. From this we obtain the main theorem.

THEOREM 3. If U is an isometry from X onto X, then it is of the form $Uf(\cdot) = u(\cdot)f(T\cdot)$ where T is a measurable transformation in Ω and u a fixed function in X, unless X is a Hilbert space.

SKETCH OF THE PROOF. The expression $[f, g]' = [Uf, Ug]$ is again a semi-inner-product on X, so that if H is hermitian the same holds for UHU^{-1}. If the real-valued function $h \in L_\infty(\Omega)$, denote by H_h the multiplication operation defined by h (which is hermitian). $UH_h U^{-1} = H_h$, where $\|H\| = \|H\|_\infty$. Since $UH_h U^{-1} UH_h U^{-1} = UH_h U^{-1}$, the operation \cdot is multiplicative, and step functions go into step functions. This defines T; the rest goes smoothly.

REMARK. The previous argument could be modified so as to hold for a form not satisfying condition (iii), if a sufficiently strong cond-

** From a letter I received recently from Dr. C. A. McCarthy, it appears that McCarthy had a proof of Theorem 2.
tion is assumed with respect to ϕ. The space would not be an Orlicz space, but an extension of the L_p space for $p < 1$. For the latter L_p spaces, it is known that the isometries are as described above.

REFERENCES

1. S. Banach, Théorie des opérations linéaires, Warsaw, Monogr. Mat., Tom 1, 1932.

STANFORD UNIVERSITY

ON THE RECURRENCE OF SUMS OF RANDOM VARIABLES

BY K. L. CHUNG1 AND DONALD ORNSTEIN2

Communicated by J. L. Doob, September 19, 1961

We give a very short proof of the recurrence theorem of Chung and Fuchs \cite{1} in one and two dimensions. This new elementary proof does not detract from the old one which uses a systematic method based on the characteristic function and yields a satisfactory general criterion. But the present method, besides its brevity, also throws light on the combinatorial structure of the problem.

Let \mathbb{N} denote the set of positive integers, \mathbb{M} that of positive real numbers. Let \{\(X_n, n \in \mathbb{N}\}\} be a sequence of independent, identically distributed real-valued random vectors, and let \(S_n = \sum_{r=1}^n X_r\). The value x is possible iff for every $\varepsilon > 0$ there exists an n such that $P\{|S_n - x| < \varepsilon\} > 0$; it is recurrent iff for every $\varepsilon > 0$, $P\{|S_n - x| < \varepsilon\}$ for infinitely many n = 1. It is shown in \cite{1} that every possible value is recurrent if and only if for some $m \in \mathbb{M}$ we have

$$\sum_{n=1}^{\infty} P\{|S_n| < m\} = \infty.$$

1 This research is supported in part by the United States Air Force Office of Scientific Research under Contract AF 49(638)-265.

2 This research is supported in part by the NSF Grant 16434.