On spectral estimation
HTML articles powered by AMS MathViewer
- by C. A. Swanson PDF
- Bull. Amer. Math. Soc. 68 (1962), 33-35
References
- H. D. Block and W. H. J. Fuchs, An enclosure theorem for eigenvalues, Bull. Amer. Math. Soc. 67 (1961), 425–426. MR 126454, DOI 10.1090/S0002-9904-1961-10658-7 2. H. F. Bohnenblust, C. R. DePrima and C. A. Swanson, Elliptic operators with perturbed domains, to appear.
- Paul R. Halmos, Introduction to Hilbert space and the theory of spectral multiplicity, AMS Chelsea Publishing, Providence, RI, 1998. Reprint of the second (1957) edition. MR 1653399
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
- Marshall Harvey Stone, Linear transformations in Hilbert space, American Mathematical Society Colloquium Publications, vol. 15, American Mathematical Society, Providence, RI, 1990. Reprint of the 1932 original. MR 1451877, DOI 10.1090/coll/015
- C. A. Swanson, An inequality for linear transformations with eigenvalues, Bull. Amer. Math. Soc. 67 (1961), 607–608. MR 131774, DOI 10.1090/S0002-9904-1961-10708-8
Additional Information
- Journal: Bull. Amer. Math. Soc. 68 (1962), 33-35
- DOI: https://doi.org/10.1090/S0002-9904-1962-10689-2
- MathSciNet review: 0133014